OBSERVATIONS AND ANALYSIS OF U CEPHEI Ву NORMAN LEE MARKWORTH A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA #### **ACKNOWLEDGEMENTS** I wish to express my appreciation to Dr. F.B. Wood for suggesting the topic of this dissertation and for his expert advice and guidance throughout the course of the work. My sincere thanks goes to Dr. J.E. Merrill for many helpful and encouraging conversations, which kept me on the straight and narrow in the "black art" of eclipsing binary solutions. His constant attention to detail is an example that I will carry with me throughout my career. I wish to thank Dr. R.E. Wilson for his advice on the use of the Wilson-Devinney solution method. Our many fruitful conversations broadened my understanding of the process of solution and helped me avoid the many pitfalls in this difficult numerical problem. Drs. K-Y. Chen, H.L. Cohen, and E.J. Devinney also deserve thanks for their help in formulating ideas and arranging the manuscript. Much of the computer time necessary for the completion of this study was provided by the Central Florida Regional Data Center in Tampa. Without their support, as well as the supplemental support of the Northeast Regional Data Center in Gainesville, much of the detailed analysis presented here could not have been accomplished. Finally, I owe many words of thanks to my family, especially my wife, Mary, whose patience and encouragement provided the necessary impetus to complete this work. ## TABLE OF CONTENTS | | | | Pa | ge | |--|------|----|----|----| | ACKNOWLEDGEMENTS | | | | ii | | ABSTRACT | | | | vi | | CHAPTER | | | | | | I INTRODUCTION | | | | 1 | | History of the Observations of U Cephei | | | | 1 | | Current Research | | | | 5 | | II INSTRUMENTATION | | | | 7 | | The Eighteen-Inch (46 cm.) f/10.5
Ritchey-Chrétien System | | • | | 7 | | The Thirty-Inch (76 cm.) f/16 Cassegrain System | | | | 8 | | III THE OBSERVATIONS | | | | 15 | | Introduction | | | | 15 | | The Close Companions of U Cephei | | | | 15 | | Reduction of the Observations | | | | 19 | | The Reduction to the Standard UBV Sy | 's t | em | | 21 | | The Comparison Stars | | | | 26 | | IV RECTIFICATION | | | | 64 | | Fourier Analyses | | | | 64 | | Rectification Formulas | | | | 73 | | V THE SOLUTIONS | | | | 78 | | The Russell-Merrill Solutions | | | | 78 | | | | | | |] | Page | |---------------------------------|----|----|----|------------|---|------| | Nomographic Solutions | | | | | | 78 | | The ψ Solution | | | | | | 80 | | The Intermediate ψ Solution | n | | | | | 84 | | The Adopted Solution | | | | | | 86 | | The Wilson-Devinney Solution . | | | | | | 9 3 | | The D.B. Wood Solution | | | | | | 9 5 | | VI THE PERIOD STUDY | | | | | | 103 | | The Current Ephemeris | | | | | | 103 | | The O-C Diagram | | | | | | 104 | | Evidence for Recent Period Chan | ge | s | | | | 111 | | VII THE MODEL | | | | | | 117 | | Introduction | | | | | | 117 | | Constructing the Test Grid | | | | | | 119 | | The Progression of the Eclipse | | | | | | 125 | | The Geometry of the Source Regi | on | | | | | 127 | | Fitting the Model to the Observ | at | ic | ns | ; . | | 133 | | VIII THE U CEPHEI SYSTEM | | | | | | 172 | | The Geometrical Parameters | | | | | | 172 | | The Primary Star | | | | | | 174 | | The Chronology of the Outburst | | | | | | 176 | | Future Research | | | | | | 179 | | BIBLIOGRAPHY | | | | | | 180 | | BIOGRAPHICAL SKETCH | | | | | | 182 | Abstract of Dissertation Presented to the Graduate Council of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy #### OBSERVATIONS AND ANALYSIS OF U CEPHEI Ву Norman Lee Markworth August, 1977 Chairman: Frank Bradshaw Wood Cochairman: Kwan-Yu Chen Major Department: Astronomy Photoelectric observations of the well-known eclipsing binary system U Cephei commenced following the report of a major outburst on the system in the summer of 1974. Approximately 3200 measurements in the standard Johnson-Morgan UBV system were obtained from October, 1974, through May, 1976. The reported outburst was observed as well as another outburst of approximately the same intensity in the fall of 1975. The conventional Fourier analysis of the outside eclipse variations failed to produce coefficients of the sine and cosine terms in accordance with theory. A trial-and-error approach produced the coefficients used in the rectification procedure. A Russell-Merrill solution was obtained which seemed to confirm the results of Hall and Walter. The light curve synthesis approach of Wilson and Devinney yielded a very similar solution, in which the observed asynchronism of the primary component was used as an additional input parameter. The computer solution technique of D.B. Wood was also attempted, but it failed because provision is not made for the asynchronous rotation of the components. Residuals of the observations in primary eclipse from the Russell-Merrill solution revealed excess light during the outbursts. This excess was modeled as hot source regions near the poles of the primary star and rotating with that star. Shock heating of the surface by infalling material is suggested as the cause of the excess light. Excess temperatures range from 7000-17000°K, yielding mean velocities of the infalling material in the range 12-21 km/s. A magnetic field on the primary star is suggested as the steering mechanism for the infalling material and conclusions based on the model are discussed. # CHAPTER I ## History of the Observations of U Cephei The variability of U Cephei (BD+81°25, HD 5679, ADS 830) was discovered by Ceraski (1880) on 23 June 1880. It was the seventh eclipsing variable discovered and displayed the deepest primary eclipse known at the time. Because of its circumpolar position at most northern hemisphere sites (declination +82°) and its relative brightness (m, = 6.%8 - 9.%0), it has been frequently and faithfully observed. The depth of primary eclipse lends itself to rather accurate visual determination of the time of minimum. This rather substantial bulk of data represents a detailed account of period changes extending for almost a century. Two prediscovery observations may extend the time scale to 150 years. Schwerd observed U Cephei on 12 May 1828, to be two magnitudes fainter than normal. Carrington estimated the variable one magnitude fainter than normal on 30 December 1855. The earlier observation seems the more reliable. Lalande observed U Cephei at normal brightness on 30 March 1790. Early photometric observers concentrated on the primary minimum. Schmidt, Knott, Wilsing, Chandler, Yendell, Pickering, Searle, Wendell, Lehnert, and Bemporad helped to confirm that the ingress branch is less steep than the egress branch. Dugan (1920) did the first complete photometric study and found that the shoulder of the eclipse near first contact was depressed, causing ingress to be less steep. He invoked a tidal bulge on the primary star lagging the conjunction by 24°. Although Cowling (1941) later showed that this explanation could not be responsible for the observed asymmetry, Dugan did show that some effects were present in U Cephei that simple theory could not explain. The next great step in understanding U Cephei came from spectroscopy. The first orbital elements by Carpenter (1930) found e = 0.47, ω = 25°. This considerable eccentricity was in complete disagreement with the work of Dugan (1920), who found secondary eclipse at 0.5P. Other spectroscopic studies followed but all found a rather large eccentricity. Struve (1944) was the first to suggest that a conventional approach could not be used to obtain the orbital elements from the radial velocity curve. He postulated a gaseous stream flowing from the cooler toward the hotter star. At times the spectrum of this stream would be seen projected onto the primary (hotter) star, giving aberrant radial velocity measures. Such gaseous streams could also account for the depression of the light curve around first contact. Batten (1974) observed the system spectroscopically and found rare instances of emission in the hydrogen lines. These lines were red-displaced at second contact and violet-displaced at third contact. The same sort of emission is more obvious in RW Tauri and Joy (1947) suggested a ring or disk has been formed around the hotter star. The transitory nature of the emission lines in U Cephei suggests that such a ring is not a stable part of the system. Another observational fact from the spectroscopic work must be considered in any working model of U Cephei. The radial velocity curve clearly indicates that the primary star is rotating at five times the synchronous rate. This will change the brightness distribution of the primary and cause some change in the light curve. Another step toward the understanding of U Cephei came with the resolution of the so-called "Algol paradox." U Cephei is an example of an Algol type system, in which the deeper eclipse is an occultation. This requires the smaller star to be the hotter, contrary to known stellar relationships on the main sequence. Plavec (1973) has written a summary of the most widely accepted explanation of this strange paradox. Kopal (1959) reconstructs the development of the Roche equipotential surfaces, which give a limit to the size of each star in the system. If the stars are sufficiently close, evolution of the initially more massive star will cause it to fill its critical lobe. Further expansion is impossible, but it can lose its mass through the inner Lagrangian point to the less massive star. Calculations indicate that such mass flow is initially self-sustaining and can, in most cases, reverse the mass ratio. Several stages have been identified for the mass loss, but the net result
is to produce a system in which a cool, large star filling its critical lobe is slowly losing mass to a rather hot, small, main sequence star. This sort of evolutionary history can explain the observations of U Cephei. The system contains a B7V primary with a G8III (spectral types by Batten, 1974) filling its critical lobe. The secondary star is more evolved and is losing mass to the primary. We now have qualitative agreement between the observations and the model. The model also accounts qualitatively for the changes in period which have been noted since the earliest observations. The mass loss responsible for the gaseous stream in U Cephei must be highly sporadic. Each episode of increased mass flow should be accompanied by a sudden change in period. Hall and Walter (1974) show several suspected period changes separated by nine to eleven years. Walter (1975) has shown that a precessional period of twelve years for the primary star is consistent with changes in the slant of the total phase of primary eclipse. Several photoelectric studies have recently been done aimed at determining the rates of mass loss and period change. The once inconceivably large values of (2-5) x 10^{-7} M_{$_{fota}$}/yr. are now accepted as the minimum values of mass loss for U Cephei. Properties of the gaseous stream have been discussed in some detail by Batten (1974). Attempts at solution of the light curve have always been hampered by contamination of the light from the gaseous stream. Hall and Walter (1974) have solved three sets of independent data from Tschudovitchev (1950), Khozov and Minaev (1969), and Catalano and Rodono (1974) in order to compare the geometrical parameters of the solutions. Their results are probably influenced by some special assumptions, but their work probably represents the first major attempt to retrieve the true geometry from the confusing effects of the gas flow using current theory. ### Current Research The present study was initiated by the report (Batten et al., 1974) of a major outburst in the U Cephei system in the summer and fall of 1974. During the course of the observations another major outburst occurred in the fall of 1975. These outbursts presented an unique opportunity to obtain information on the dynamical behavior of the gaseous stream and its affect on the hotter star. This dissertation attempts to bring about the next step in understanding the physical nature of U Cephei. The ... modeling of the dynamic surface brightness distribution of the primary star should unite the previous work concerning the shape of the components and the properties of the gaseous stream. Consistent values of the geometrical parameters of the system are essential before convincing theoretical arguments can be made. Since variations in the light curve outside the scope of the solution models were felt to be primarily intrinsic, considerable effort went into the accurate reduction and standardization of the data. These efforts occupy Chapters II and III. The application of the Russell-Merrill solution method depends on being able to correct the observations to the equivalent spherical model, i.e., remove the variation outside of eclipse. The intrinsic variation in U Cephei causes uncertainty in this "rectification" procedure. Chapter IV outlines the rectification procedure and results. Chapter V deals with the solution techniques and results. Chapter VI presents a new period study, employing all known observations. With a new solution yielding consistent geometrical parameters, a model can now be presented for nights of high photometric activity. Chapter VII discusses this model for the primary star. Chapter VIII concludes the work with the model for the U Cephei system and predictions based on the model. #### CHAPTER II #### INSTRUMENTATION Observations were carried out on two telescopes so as to cover the light curve in as short a time as possible within the constraints of scheduling. The descriptions of both photometric systems follows. ### The Eighteen-Inch (46 cm.) f/10.5 Ritchey-Chrétien System The photometer was the same employed by K-Y. Chen and D.A. Rekenthaler (Chen and Rekenthaler, 1966). It uses an uncooled 1P21 photomultiplier operated at 900 volts. Two diaphragms were used (see Chapter III) yielding diameters of 86.2 and 42.5 arc seconds. The filters were ultraviolet (Corning 9863), blue (Corning 5030 and Schott GCl3), and yellow (Corning 3389), corresponding to the Johnson-Morgan standard UBV system. Unfortunately, the telescope tailpiece has a diagonal prism before the mount for the photometer. This makes viewing through the photometer much easier, but presents severe transmission problems in the ultraviolet. In fact, it appears that the red leak component alone remains in the "ultraviolet" band. An adapter was built of the proper dimensions, so that good focus could still be achieved without the diagonal prism. It was found, however, that the new arrangement would not permit the telescope to reach the declination of the variable. Yellow and blue observations should be unaffected by the diagonal prism and, therefore, were the only filter bands used for this system. The signal is sent from the photometer to a newly designed fast electrometer amplifier (Oliver, 1976). The finegain range is such that the same coarse-gain step (5.0) could be used for all observations. Tables 1 and 2 show the calibrations of the PA/10 amplifier for the nights of observation. On two nights (10/31/74 and 11/10/74) no calibration of coarse-gain steps was done since no procedure was available at that time. The mean of the 5.0 magnitude gain step was used on these nights. Although rather large night to night variation in the coarse-gain calibrations is obvious, calibrations at the beginning and end of each night show very little variation (typically ≤ 0.001). The trend of the calibrations suggest aging effects. A Heath strip-chart recorder monitored the observations at $\frac{1}{2}$ inch/minute. ## The Thirty-Inch (76 cm.) f/16 Cassegrain System The photometer used was the dual channel photometer of the Astro-Mechanics Company, Inc. Only channel I was used which incorporates an EMI 6256B (S11) photocathode refrigerated with dry ice. The light was initially passed through a dichroic filter which reflects 95% of the light between 3500 Å and 6000 Å into the light path of channel I and passes 80% of the light above 6500 Å into the light path of channel $\label{table 1} \mbox{Fine-Gain Calibrations for the PA/10 Amplifier }$ | Gain | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | T | H | |----------|--------|--------|--------|--------|----------|-----|---------|------|-----| | Date | | | | | | | | (°F) | (%) | | 10/31/74 | 2.5280 | 1.9870 | 1.5030 | 0.9990 | 0.5100 | 0.0 | -0.5320 | 5.5 | 80 | | 11/10/74 | 2.5290 | 1.9860 | 1.5050 | 1.0000 | 0.5120 | 0.0 | -0.5340 | 45 | 80 | | 11/15/74 | 2.5270 | 1.9850 | 1.5020 | 0.9970 | 0.5090 | 0.0 | -0.5300 | 45 | 7.0 | | 03/25/75 | 2.5266 | 1.9856 | 1.5031 | 1.0013 | 0.5123 | 0.0 | -0.5338 | 8 9 | 46 | | 04/04/75 | 2.5307 | 1.9890 | 1.5070 | 1.0029 | 0.5127 | 0.0 | -0.5351 | 4 8 | 9 | | 04/06/75 | 2.5352 | 1.9923 | 1.5100 | 1.0061 | 0.5131 | 0.0 | -0.5353 | 5.7 | 5.5 | | 09/18/75 | 2.5119 | 1.9760 | 1.4969 | 0.9992 | . 0.5093 | 0.0 | -0.5276 | 72 | 9 5 | | 09/25/75 | 2.4807 | 1.9649 | 1.4889 | 0.9922 | 0.5009 | 0.0 | -0.5324 | 5 8 | 7.5 | | 10/12/75 | 2.4952 | 1.9692 | 1.4910 | 0.9923 | 0.5042 | 0.0 | -0.5305 | 6.5 | 80 | | 10/21/75 | 2.5070 | 1.9722 | 1.4946 | 0.9958 | 0.5074 | 0.0 | -0.5276 | 64 | ; | | | | | | | | | | | | $\label{eq:Table 2} Table \ 2$ Coarse-Gain Calibrations for the PA/10 Amplifier | Gain | 12.5 | 10.0 | 7.5 | 5.0 | 2.5 | 0.0 | |----------|---------|----------------|--------|--------|--------|---------| | Date | | | | | | | | 10/31/74 | | No Calibration | | 4.8624 | | | | 11/10/74 | | No Calibration | | 4.8624 | | | | 11/15/74 | 1 | 1 | 7.3745 | 4.8521 | 2.4837 | -0.0010 | | 03/25/75 | 12.4224 | 9.8202 | 7.4999 | 4.8695 | 2.4899 | -0.0010 | | 04/04/75 | 12.3816 | 9.7902 | 7.4747 | 4.8534 | 2.4816 | -0.0010 | | 04/06/75 | 12.4455 | 9.8535 | 7.4777 | 4.8559 | 2.4850 | -0.0010 | | 09/18/75 | 12.3134 | 9.7407 | 7.4708 | 4.8625 | 2.4873 | -0.0010 | | 09/25/75 | 12.3893 | 9.7889 | 7.4877 | 4.8624 | 2.4863 | -0.0010 | | 10/12/75 | 12.3724 | 9.7727 | 7.4788 | 4.8659 | 2.4888 | -0.0010 | | 10/21/75 | 12.3909 | 9.7960 | 7.4938 | 4.8692 | 2.4883 | -0.0010 | | | | | | | | | II. The dichroic filter is typically used for simultaneous photometry in the red and one of the UBV colors. It was thought, however, that its insertion for this one channel work would eliminate the problem of red leak which plagues the broad band ultraviolet filter. A diaphragm of 15.2 arc seconds was inserted in front of the photocathode. The filters used for the ultraviolet (Corning 9863), blue (Corning 5030 and Schott GCl3), and yellow (Corning 3389) approximate the Johnson-Morgan standard UBV system. The amplifier was the PA-1/C, the latest version of the PA-1, designed at the UCLA Astronomy Department and constructed at the University of Florida. Even though the range of the fine-gain steps is 5.0 magnitudes, not all observations could be taken on the same coarse-gain step. The difference between the largest (variable-blue) and the smallest (comparison-ultraviolet) deflections was typically 6.0 magnitudes outside of the eclipse on photometric nights. The variable-blue readings are the only observations taken on a different coarse-gain step. Calibrations were carefully done twice a night for both the ½- and ½-magnitude gain steps and are presented in Tables 3 and 4. The amplifier was quite stable even in the ½-magnitude gain steps and variations during the night were negligible. Observations were monitored on a Honeywell strip-chart recorder, which was replaced in January 1976, by a Texas Instrument strip-chart recorder. Observations were also recorded on digital tape, the tape drive of which was
replaced Table 5 Fine Gain Calibrations for the PA-1/C | Gain 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 1.0 </th <th></th> | | | | | | | | | | | | | |---|-----------|--------|--------|--------|--------|--------|-----|---------|---------|---------|---------|---------| | 775 2.5042 2.0016 1.5014 1.0012 0.5011 0.0 -0.5023 -1.0056 775 2.5035 2.0006 1.5000 1.0003 0.5010 0.0 -0.5018 -1.0056 775 2.5035 2.0004 1.5000 1.00651 0.5034 0.0 -0.5016 -1.0056 775 2.5045 2.0014 1.5001 1.0007 0.5309 0.0 -0.5176 -1.0049 775 2.5045 2.0004 1.5001 1.0007 0.5013 0.0 -0.5017 -1.0049 775 2.5045 2.0004 1.5011 1.0017 0.5013 0.0 -0.5017 -1.0049 7/75 2.5046 2.0009 1.5013 1.0013 0.5018 0.0 -0.5017 -1.0049 7/75 2.5047 2.0013 1.5013 1.0013 0.5018 0.0 -0.5013 -1.0049 8/76 2.5044 2.0013 1.5011 1.0013 0.5019 0.0 -0.5013 </th <th>Cain</th> <th>2.5</th> <th>2.0</th> <th>1.5</th> <th>1.0</th> <th>0.5</th> <th>0.0</th> <th>-0.5</th> <th>-1.0</th> <th>-1.5</th> <th>-2.0</th> <th>-2.5</th> | Cain | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1.0 | -1.5 | -2.0 | -2.5 | | 2.5035 2.0016 1.5014 1.0012 0.5011 0.0 -0.5023 -1.0056 2.5035 2.0006 1.5000 1.0003 0.5010 0.0 -0.5018 -1.0056 2.5131 2.0004 1.5002 1.00531 0.0 -0.5036 -1.0090 2.5045 2.0014 1.5001 1.0007 0.5030 0.0 -0.5176 -1.0049 2.5032 2.0004 1.5011 1.0007 0.5013 0.0 -0.5017 -1.0049 2.5045 2.0009 1.5011 1.0017 0.5018 0.0 -0.5027 -1.0049 2.5046 2.0004 1.5011 1.0013 0.5009 0.0 -0.5033 -1.0049 2.5047 2.0017 1.5019 1.0018 0.5010 0.0 -0.5034 -1.0044 2.5046 2.0017 1.5011 1.0018 0.5019 0.0 -0.5013 -1.0044 2.5046 2.0016 1.5011 1.0018 0.5019 0.0 -0.5011 | Date | , | | | | | | | | | | | | 2.5035 2.0006 1.5000 1.0003 0.5010 0.0 -0.5018 -1.0056 2.5131 2.0073 1.5051 1.0051 0.5034 0.0 -0.5036 -1.0090 2.5045 2.0014 1.5009 1.0009 0.5309 0.0 -0.516 -1.0049 2.5032 2.0004 1.5001 1.0007 0.5004 0.0 -0.5017 -1.0049 2.5045 2.0009 1.5011 1.0017 0.5018 0.0 -0.5027 -1.0049 2.5045 2.0009 1.5011 1.0013 0.5009 0.0 -0.5013 -1.0049 2.5047 2.0004 1.5012 1.0013 0.5018 0.0 -0.5033 -1.0044 2.5047 2.0021 1.5019 1.0018 0.5036 0.0 -0.5033 -1.0044 2.5046 2.0017 1.5011 1.0013 0.5019 0.0 -0.5013 -1.0044 2.5046 2.0017 1.5011 1.0018 0.5016 0.0 | 03/19/75 | 2.5042 | 2.0016 | 1.5014 | 1.0012 | 0.5011 | 0.0 | -0.5023 | -1,0059 | -1.5119 | -1,9953 | -2.4950 | | 2.5131 2.0073 1.5051 1.0051 0.5034 0.0 -0.5936 -1.0090 2.5045 2.0014 1.5009 1.0009 0.5309 0.0 -0.5f16 -1.0049 2.5032 2.0004 1.5001 1.0007 0.5004 0.0 -0.5f16 -1.0049 2.5045 2.0009 1.5011 1.0017 0.5011 0.0 -0.5027 -1.0047 2.5046 2.0009 1.5011 1.0013 0.5036 0.0 -0.5037 -1.0049 2.5047 2.0021 1.5019 1.0018 0.5036 0.0 -0.5034 -1.0044 2.5046 2.0021 1.5019 1.0018 0.5036 0.0 -0.5034 -1.0044 2.5046 2.0021 1.5019 1.0018 0.5009 0.0 -0.5034 -1.0044 2.5046 2.0022 1.5019 1.0018 0.5009 0.0 -0.5013 -1.0044 2.5046 2.0016 1.5019 1.0011 0.5009 0.0 | 03/21/75 | 2.5035 | 2.0006 | 1.5000 | 1.0003 | 0.5010 | 0.0 | -0.5018 | -1.0056 | -1.5116 | -1.9955 | -2.4953 | | 2.5045 2.0014 1.5009 1.0009 0.5309 0.0 -0.5f16 -1.0049 2.5032 2.0004 1.5001 1.0007 0.5014 0.0 -0.5017 -1.0047 2.5045 2.0009 1.5011 1.0017 0.5011 0.0 -0.5027 -1.0063 2.5045 2.0009 1.5011 1.0013 0.5019 0.0 -0.5037 -1.0063 2.5047 2.0029 1.5012 1.0030 0.5036 0.0 -0.5033 -1.0049 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5033 -1.0044 2.5046 2.0017 1.5011 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5046 2.0027 1.5015 1.0018 0.5010 0.0 -0.5012 -1.0044 2.5046 2.0020 1.5015 1.0011 0.5009 0.0 -0.5019 -1.0044 2.5047 2.0016 1.5015 1.0014 0.5006 0.0 | 04/15/75 | 2.5131 | 2,0073 | 1.5051 | 1.0651 | 0.5034 | 0.0 | -0.5036 | -1.0090 | -1.5174 | -2.0047 | -2.5075 | | 2.5032 2.0004 1.5001 1.0007 0.5034 0.0 -0.5017 -1.0047 2.5045 2.0009 1.5011 1.0017 0.5011 0.0 -0.5027 -1.0063 2.5014 2.0005 1.4097 1.0013 0.5009 0.0 -0.5037 -1.0049 2.5032 2.0048 1.5032 1.0030 0.5038 0.0 -0.5033 -1.0075 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5037 -1.0044 2.5046 2.0017 1.5011 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5049 2.0021 1.5011 1.0013 0.5010 0.0 -0.5013 -1.0044 2.5049 2.0020 1.5015 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5049 2.0016 1.5010 1.0011 0.5010 0.0 -0.5011 -1.0044 2.5049 2.0016 1.5012 1.0014 0.5010 -0.5011 | 04/21/75. | 2.5045 | 2.0014 | 1.5009 | 1.0009 | 0.5309 | 0.0 | -0.5(16 | -1.0049 | -1.5104 | -1.9945 | -2.4956 | | 2.5045 2.0009 1.5011 1.0017 0.5011 0.0 -0.5027 -1.0063 2.5014 2.0005 1.4997 1.0013 0.5009 0.0 -0.5013 -1.0049 2.5092 2.0048 1.5032 1.0030 0.5018 0.0 -0.5033 -1.0075 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5034 -1.0075 2.5047 2.0017 1.5011 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5046 2.0027 1.5011 1.0010 0.5103 0.0 -0.5013 -1.0044 2.5048 2.0020 1.5015 1.0011 0.5010 0.0 -0.5019 -1.0044 2.5048 2.0020 1.5015 1.0014 0.5010 0.0 -0.5019 -1.0054 2.5048 2.0009 1.5003 0.0 -0.5019 -1.0054 2.5047 2.0019 1.5012 1.0014 0.5010 -0.5014 -1.0054 | 04/22/75 | 2.5032 | 2.0004 | 1.5001 | 1.0007 | 0.5004 | 0.0 | -0.5017 | -1.0047 | -1.5098 | -1.9936 | -2.4930 | | 2.5014 2.0005 1.4997 1.0013 0.5009 0.0 -0.5013 -1.0049 2.5092 2.0048 1.5032 1.0030 0.5018 0.0 -0.5033 -1.0073 2.5289 2.0190 1.5137 1.0096 0.5036 0.0 -0.5031 -1.0075 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5046 2.0017 1.5011 1.0013 0.5009 0.0 -0.5017 -1.0044 2.5046 2.0020 1.5015 1.0018 0.5010 0.0 -0.5019 -1.0044 2.5048 2.0020 1.5015 1.0011 0.5099 0.0 -0.5019 -1.0051 2.5048 2.0009 1.5003 0.0 -0.5019 -1.0054 2.5048 2.0019 1.5013 0.5011 0.0 -0.5014 -1.0057 2.5046 2.0019 1.5012 1.0014 0.5011 0.0 -0.5018 -1.0057 | 08/17/75 | 2.5045 | 2.0009 | 1.5011 | 1.0017 | 0.5011 | 0.0 | -0.5027 | -1.0063 | -1.5117 | -1.9947 | -2.4939 | | 2.5892 2.0048 1.5832 1.0030 0.5018 0.0 -0.5033 -1.0073 2.5289 2.0190 1.5137 1.0096 0.5036 0.0 -0.5034 -1.0075 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5044 2.0017 1.5011 1.0013 0.5009 0.0 -0.5015 -1.0044 2.5049 2.0020 1.5015 1.0015 0.5010 0.0 -0.5019 -1.0044 2.5048 2.0020 1.5015 1.0011 0.5009 0.0 -0.5019 -1.0051 2.5048 2.0016 1.5010 1.0011 0.5009 0.0 -0.5019 -1.0054 2.5047 2.0019 1.5003 0.0 -0.5014 -1.0054 2.5048 2.0019 1.5013 1.0014 0.5011 0.0 -0.5012 1.0055 2.5048 2.0019 1.5012 1.0014 0.5011 0.0 -0.5018 1.0065 | 08/21/75 | 2.5014 | 2.0005 | 1.4997 | 1.0013 | 6005.0 | 0.0 | -0.5013 | -1.0049 | -1.5107 | -1.9938 | -2.4934 | | 2.5289 2.C190 1.5137 1.0096 0.5036 0.0 -0.5034 -1.0075 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5046 2.0017 1.5011 1.0013 0.5009 0.0 -0.5015 -1.0046 2.5041 2.0027 1.5011 1.0013 0.5009 0.0 -0.5019 -1.0044 2.5049 2.0020 1.5015 1.0011 0.5010 0.0 -0.5019 -1.0044 2.5048 2.0016 1.5015 1.0011 0.5009 0.0 -0.5019 -1.0054 2.5047 2.6019 1.5015 1.0014 0.5011 0.0 -0.5012 -1.0054 2.5046 2.0016 1.5015 1.0014 0.5011 0.0 -0.5018 -1.0055 2.5046 2.0016 1.5012 1.0013 0.5012 0.0 -0.5018 1.0065 2.5048 2.0019 1.5014 0.01 -0.5011 1.0065 | 52/57/80 | 2.5092 | 2.6048 | 1.5032 | 1.0030 | 0.5018 | 0.0 | -0.5033 | -1.0073 | -1.5137 | -1.9967 | -2,4961 | | 2.5047 2.0021 1.5019 1.0018 0.5010 0.0 -0.5013 -1.0044 2.5046 2.0017 1.5011 1.0013 0.5009 0.0 -0.5017 -1.0046 2.5041 2.0013 1.5010 1.0010 0.5103 0.0 -0.5010 -1.0044 2.5049 2.0020 1.5015 1.0011 0.5010 0.0 -0.5019 -1.0054 2.5048 2.0016 1.5010 1.0011 0.5009 0.0 -0.5019 -1.0054 2.5047 2.6019 1.5015 1.0014 0.5611 0.0 -0.5012 -1.0054 2.5046 2.0018 1.5015 1.0014 0.5011 0.0 -0.5012 -1.0055 2.5046 2.0019 1.5012 1.0013 0.5012 0.0 -0.5018 1.0065 2.5048 2.0019 1.5012 1.0013 0.5011 0.0 -0.5018 1.0065 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 | 10/15/75 | 2.5289 | 2.6190 | 1.5137 | 1.0096 | 0.5036 | 0.0 | -0.5034 | -1.0075 | -1.5143 | -1.9991 | -2.5005 | | 2.5046 2.0017 1.5011 1.0013 0.5009 0.0 -0.5617 -1.6046 2.5041 2.0013 1.5010 1.0010 0.5103 0.0 -0.5010 -1.0044 2.5049 2.0020 1.5015 1.0018 0.5010 0.0 -0.5019 -1.0054 2.5045 2.0016 1.5010 1.0011 0.5009 0.0 -0.5019 -1.0054 2.5047 2.6019 1.5015 1.0014 0.5011 0.0 -0.5012 -1.0057 2.5046 2.0016 1.5012 1.0013 0.5012 0.0 -0.5018 -1.0053 2.5048 2.0019 1.5012 1.0013 0.5012 0.0 -0.5018 -1.0053 2.5048 2.0019 1.5012 1.0013 0.5011 0.0 -0.5018 -1.0053 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 10/23/75 | 2.5047 | 2.0021 | 1.5019 | 1.0018 | 0.5010 | 0.0 | -0.5013 | 1.0044 | -1.5101 | -1.9544 | -2,4948 | | 2.5041 2.0013 1.5010 1.0010 0.5163 0.0 -0.5010 -1.0044 2.5049 2.0020 1.5015 1.0015 0.5010 0.0 -0.5019 -1.0051 2.5045 2.0016 1.5010 1.0011 0.5039 0.0 -0.5019 -1.0051 2.5048 2.0009 1.5003 1.0004 0.5006 0.0 -0.5014 -1.0057 2.5046 2.0018 1.5012 1.6013
0.5012 0.0 -0.5018 -1.0053 2.5046 2.0019 1.5012 1.0013 0.5012 0.0 -0.5017 -1.0053 2.5048 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.0053 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5017 -1.0055 | 02/03/16 | 2.5046 | 2.0017 | 1.5011 | 1.0013 | 0.5009 | 0.0 | -0.5017 | -1.6046 | -1.5096 | -1.9957 | -2.4955 | | 2.5045 2.0025 1.5015 1.0015 0.5010 0.0 -0.5019 -1.0051 2.5045 2.0016 1.5010 1.0011 0.5039 0.0 -0.5019 -1.0054 2.5048 2.0009 1.5003 1.0014 0.5011 0.0 -0.5014 -1.0054 2.5046 2.0018 1.5012 1.6013 0.5012 0.0 -0.5018 -1.0053 2.5046 2.0019 1.5012 1.0013 0.5012 0.0 -0.5018 -1.0053 2.5048 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.0047 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 02/08/16 | 2.5041 | 2.0013 | 1.5010 | 1.0010 | 0.5103 | 0.0 | -0.5010 | -1.0044 | -1.5091 | -1.9956 | -2.4952 | | 2.5045 2.0016 1.5010 1.0011 0.5009 0.0 -0.5019 -1.0054 2.5038 2.0009 1.5003 1.0004 0.5006 0.0 -0.5014 -1.0034 2.5047 2.6019 1.5013 1.0014 0.5011 0.0 -0.5012 -1.0057 2.5046 2.0015 1.5012 1.6013 0.5012 0.0 -0.5018 -1.0053 2.5049 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.0047 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 02/15/76 | 2.5049 | 2.0023 | 1.5015 | 1,0015 | 0.5010 | 0.0 | -0.5019 | -1.0051 | -1.5107 | -1.9957 | -2.4954 | | 2.5038 2.0009 1.5003 1.0004 0.5006 0.0 -0.5014 -1.0034 2.5047 2.6019 1.5013 1.0014 0.5011 0.0 -0.5022 -1.0057 2.5046 2.0018 1.5012 1.6013 0.5012 0.0 -0.5018 -1.0053 2.5049 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.0063 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 03/02/76 | 2.5045 | 2.0016 | 1.5010 | 1.0011 | 0.5009 | 0.0 | -0.5019 | -1.0054 | -1.5111 | -1.9952 | -2.4948 | | 2.5046 2.0016 1.5013 1.0014 0.5611 0.0 -0.5022 -1.0057 2.5046 2.0018 1.5012 1.6013 0.5012 0.0 -0.5018 -1.0053 2.5019 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.0047 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 03/18/76 | 2.5038 | 2.0009 | 1.5003 | 1.0004 | 0.5006 | 0.0 | -0.5014 | -1.0034 | -1.5069 | -1.9964 | -2,4960 | | 2.5046 2.0016 1.5012 1.6013 0.5012 0.0 -0.5018 -1.0063
2.5019 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.0047
2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0065 | 0:/01/76 | 2.5047 | 2.6019 | 1.5013 | 1.0014 | 0.5011 | 0.0 | -0.5022 | -1.0057 | -1.5116 | -1.9952 | -2.4951 | | 2.5019 2.0019 1.5012 1.0013 0.5011 0.0 -0.5017 -1.00047 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 04/18/76 | 2.5046 | 2.0018 | 1.5012 | 1.6013 | 0.5012 | 0.0 | -0.5018 | -1.0053 | -1.5108 | -1,9950 | -2.4945 | | 2.5048 2.0019 1.5014 1.0014 0.5011 0.0 -0.5019 -1.0055 | 04/26/76 | 2.5019 | 2.0019 | 1.5012 | 1.0013 | 0.5011 | 0.0 | -0.5017 | -1.0047 | -1.5097 | -1.9965 | -2,4963 | | | 05,04/76 | 2.5048 | 2.0019 | 1.5014 | 1.0014 | 0.5011 | 0.0 | -0.5019 | -1.0055 | -1.5115 | -1,9949 | -2.4947 | | 05/19/76 2.5048 2.0018 1.5012 1.0014 0.5012 0.0 -0.5021 -1.0055 -1. | 05/19/76 | 2.5048 | 2.0018 | 1.5012 | 1.0014 | 0.5012 | 0.0 | -0.5021 | -1.0055 | -1.5112 | -1.9957 | -2.4954 | Table 4 Coarse Gain Calibrations for the PA-1/C | Gain | 12.5 | 10.0 | 7.5 | 5.0 | 2.5 | 0.0 | T | H | |----------|---------|---------|--------|--------|--------|---------|------|-----| | Date | | | | | | | (°F) | (%) | | 03/19/75 | 12.4727 | 10.0006 | 7.4993 | 4.9878 | 2.4953 | -0.0190 | 60 | 6.5 | | 03/21/75 | 12.5021 | 10.0253 | 7.5187 | 5.0023 | 2.5050 | -0.0145 | 60 | 8 5 | | 04/15/75 | 12.5052 | 10.0311 | 7.5245 | 5.0071 | 2.5079 | -0.0114 | 48 | 90 | | 04/21/75 | 12.5095 | 10.0317 | 7.5227 | 5.0049 | 2.5006 | -0.0126 | 56 | 94 | | 04/22/75 | 12.5056 | 10.0292 | 7.5219 | 5.0044 | 2.5064 | -0.0132 | 60 | 95 | | 08/17/75 | 12.4925 | 10.0169 | 7.5160 | 5.0012 | 2.5048 | -0.0176 | 80 | 95 | | 08/21/75 | 12.4969 | 10.0211 | 7.5189 | 5.0025 | 2.5056 | -0.0161 | 73 | 90 | | 08/25/75 | 12.4902 | 10.0159 | 7.5158 | 5.0005 | 2.5648 | -0.0170 | 75 | 90 | | 10/15/75 | 12.4984 | 10.0227 | 7.5202 | 5.0016 | 2.5053 | -0.0147 | 70 | 85 | | 10/23/75 | 12.4997 | 10.0233 | 7.5185 | 5.0020 | 2.5050 | -0.0152 | 64 | 94 | | 02/03/76 | 12.5089 | 10.0319 | 7.5215 | 5.0043 | 2.5063 | -0.0120 | 54 | 90 | | 02/08/76 | 12.5181 | 10.0391 | 7.5251 | 5.0064 | 2.5075 | -0.0095 | 40 | 70 | | c2/15/76 | 12.4995 | 10.0238 | 7.5191 | 5.0028 | 2.5048 | -0.0157 | 6.8 | 70 | | 03/02/76 | 12.4960 | 10.0208 | 7.5174 | 5.0017 | 2.5049 | -0.0162 | 70 | 80 | | 03/18/76 | 12.5156 | 10.0376 | 7.5230 | 5.0048 | 2.5063 | -0.0096 | 5.5 | 80 | | 04/04/76 | 12.3034 | 10.0272 | 7.5205 | 5.0035 | 2.5060 | -0.0141 | 60 | 85 | | 04/18/76 | 12.5117 | 10.0339 | 7.5238 | 5.0062 | 2.5081 | -0.0118 | 65 | 85 | | 04/26/76 | 12.5119 | 10.0348 | 7.5231 | 5.0051 | 2.5068 | -0.0109 | 58 | 80 | | 05/04/76 | 12.5009 | 10.0238 | 7.5192 | 5.0025 | 2.5054 | -0.0154 | \$5 | 80 | | 05/19/76 | 12.4977 | 10.0220 | 7.5177 | 5.0018 | 2,5049 | -0.0156 | 5.5 | 03 | in January 1976. By inspecting the $\frac{1}{2}$ -magnitude calibrations, it appears as if the system was noisier prior to the installation of the new tape drive unit. # CHAPTER III THE OBSERVATIONS ### Introduction Thirty nights of observation (ten and twenty on the eighteen-inch and thirty-inch telescopes, respectively) have yielded approximately 3200 measurements of intensity and time for U Cephei. Table 5 lists the dates of observation for each telescope. ## The Close Companions of U Cephei Observations of U Cephei are plagued by the presence of two close companions. The following table (Table 6) lists properties of the stars of the system. Observations of the two companions were made in 1881 and 1899. Aside from these observations, there is scant information on these stars. The original observations by Knott (Jeffers et al., 1963) gave AO as the spectral type for both, whereas later photoelectric work gave color differences more consistent with G6-7 for B. The magnitude differences between these companions and U Cephei in conjunction with their estimated spectral type indicate that C is probably a background object, while B is probably at the distance of U Cephei. | Eighteen-inch | Thirty-inch | |---------------|--------------| | 31 Oct. 1974 | 19 Mar. 1975 | | 10 Nov. 1974 | 21 Mar. 1975 | | 15 Nov. 1974 | 15 Apr. 1975 | | 25 Mar. 1975 | 21 Apr. 1975 | | 4 Apr. 1975 | 22 Apr. 1975 | | 6 Apr. 1975 | 17 Aug. 1975 | | 18 Sep. 1975 | 21 Aug. 1975 | | 25 Sep. 1975 | 25 Aug. 1975 | | 12 Oct. 1975 | 15 Oct. 1975 | | 21 Oct. 1975 | 23 Oct. 1975 | | | 3 Feb. 1976 | | | 8 Feb. 1976 | | | 15 Feb. 1976 | | | 2 Mar. 1976 | | | 18 Mar. 1976 | | | 4 Apr. 1976 | | | 18 Apr. 1976 | | • | 26 Apr. 1976 | | | 4 May 1976 | | | 19 May 1976 | | Star | V | B - V | U- B | Sp. | PA | D | |-----------|--------------------|--------------------|--------------------|--------------------|------|-------| | U Cephei | | | | | | | | Combined | 6 ^m 8 3 | -0 ^m 05 | -0 ^m 40 | | | | | Primary | 6.95 | -0.11 | -0.43 | B7V | | | | Secondary | 9.11 | +0.88 | +0.40 | G8III ^a | | | | В | 11.83 | +0.73 | +0.29 | (G6-7) | 62° | 13!!8 | | С | 12.9 | | | A0(?) | 321° | 21"2 | | | | | | | | | ^aFrom Batten (1974). Figure 1 shows the positions of the companions superimposed on the smallest diaphragm of the eighteen-inch telescope system. This diaphragm was used until 6 April 1975. An observing note on 10 November 1974, noted the two companions with no diaphragm in place. Calculations show that C is below the sky limit on all but moonless nights with little haze. These conditions were obtained only on 10 November 1974, and 6 April 1975, when the smallest diaphragm was still in use. Even under ideal conditions C is only about 0.2 above the typical sky through the eighteen-inch telescope system. Tests of the Fabry lens of the eighteen-inch telescope indicate that edge effects may reduce the intensity of C by half at its position. The maximum error introduced by not correcting for C is 0.000 in the visual Figure 1. U Cephei and its companions. and 0.041 in the blue. The variable must be about 70% into eclipse before the relative intensity of C compared to the variable could introduce as much magnitude variation in the light curve as the typical error of the observations (0.01). For all these reasons C was assumed negligible and corrections were made only for B on nights before 6 April 1975. After that time the next larger diaphragm was used and both companions were used for correction. Observations in eclipse (i.e., 10/31/74, 11/10/74, 11/15/74, 04/06/75) were checked for abnormal fluctuations after corrections and none were found. No such problems were encountered on the thirty-inch telescope, since the chosen diaphragms were small enough to consistently exclude both companions. On moonless nights of superior photometric quality, deflections were taken on these companions. Table 7 shows the magnitude differences with respect to BD+81°29 of both companions in the three colors as well as the ratio of intensities. The weights reflect the quality of the other observations around the time of the deflections. # Reduction of the Observations Observations were taken in the sequence comparison VBU, variable UBV, comparison, VBU. The typical time between consecutive variable star measurements was four to five minutes. Sky readings at all gains used were taken every Table 7 Differential Magnitudes of the Close Companions With Respect to BD+81°29 | | | Compan | ion B | | | Compan | ion C | | |------------|-------------------|-------------------|-------------------|-----|-------------------|-------------------|--------------------|-----| | Date | ΔV | ΔΒ | ΔU | Wt. | ΔV | ΔΒ | ΔU | Wt. | | 04/15/75 | 3 ^m 38 | 2 ^m 94 | 2 ^m 71 | 1 | 4 ^m 38 | 4 ^m 38 | 5 ^m 6 1 | 12 | | | | | | | 4.58 | 4.71 | 4.60 | 1 | | 08/17/75 | 3.33 | 3.21 | 3.00 | 1 | 4.24 | 4.35 | 4.54 | 1 | | 02/03/76 | 3.22 | 3.17 | 2.94 | 2 | 4.34 | 4.54 | 4.96 | 2 | | Means | 3.29
± 5 | 3.12
± 8 | 2.90
± 8 | | 4.38
± 7 | 4.54
± 7 | 4.86
± 19 | | | Ratio of I | Intensi | ties | | | | | | | | | | | 3 0.0695
5 ± 6 | | 0.0177
± 2 | | 3 0.0114
2 ± 4 | | ½-hour on moonless nights,
more frequently on nights with a moon, and after every comparison star observation if the moon was rising or setting. All sky readings were taken just north of the comparison star in a field clear of stars. Check star observations were taken two to three times per night. My initial reduction routine removed the effect of the sky, found differential magnitudes $(m_{\rm var}^{-m}{}_{\rm comp})$ and color differences by linear interpolation. All data were then rechecked on the strip-chart records to insure that all usable data were free of keypunch errors. ## The Reduction to the Standard UBV System Stars in the Hyades cluster were used as standards. Two observing runs were done on the thirty-inch telescope (one run each on the eastern and western halves of the sky) and one run of excellent quality was done on the eighteen-inch telescope. Since the declination of U Cephei is almost +82°, good atmospheric extinction information cannot be obtained from the comparison stars. Extinction information from the standard stars was used to transform the variable star observations to the standard UBV system. The symbols and equations that follow in this section are those of R.H. Hardie (Hardie, 1962). Table 8 lists the data for the standard stars. The stars were observed sequentially as given in the table and this sequence was repeated four to seven times as the stars progressed through approximately 1½ air masses. Table 8 Data on Stars in the Hyades Cluster | Star | BD# | V | B - V | U - B | RA (1950 | .0) Dec | |------|--------|--------------------|--------------------|--------------------|--|-----------| | 72 | 15°632 | 3 ^m .41 | 0 ^m 179 | 0 ^m 132 | 4 ^h 25 ^m 48 ^s | 15°45'42" | | 71 | 15°631 | 3.85 | .955 | .741 | 4 25 43 | 15 51 10 | | 75 | 15°633 | 6.59 | .531 | .060 | 4 26 08 | 16 03 00 | | 82 | 15°647 | 4.78 | .173 | .126 | 4 27 42 | 16 05 12 | | 85 | 15°640 | 6.51 | .426 | .009 | 4 27 55 | 16 02 30 | | 83 | 15°639 | 5.48 | .259 | .097 | 4 27 48 | 15 35 05 | | 80 | 15°636 | 5.58 | .319 | .009 | 4 27 17 | 15 31 49 | | | | | | | | | From Johnson and Knuckles (1955). The second order coefficients were calculated first by least squares solutions of Hardie's equations 25, $$\Delta(b - v) = k_{bv}^{"} \Delta(b - v) X + \Delta(b - v)_{0} ,$$ $$\Delta(u - b) = k_{ub}^{"} \Delta(u - b) X + \Delta(u - b)_{0} ,$$ where small case letters refer to observed quantities, X is the air mass, and the second order coefficients are $k_{bv}^{"}$ and $k_{ub}^{"}$. The Δ quantities in the equations refer to differential measures between the standards. The procedure followed was to take each standard star in sequence as the base star and calculate the second order coefficients, using all the other stars in combination with the base star. This yielded forty-two determinations of each coefficient. Useful information, however, can only be obtained between stars having sufficiently different color indices. Table 9 shows the combinations of stars used for each color index. Weighted means Table 9 Star Combinations Used to Calculate Second Order Extinction Coefficients Nomenclature is that of Table 8. | B - V | U-B | |---------|---------| | 72-71 | 71 - 75 | | 71 - 72 | 71-85 | | 71-82 | 75-71 | | 82-71 | 85-71 | | | 80-71 | were taken of the coefficients resulting from the above combinations with the weights being the normalized ratio of the coefficient and its standard error. The results of the two runs on the thirty-inch telescope were averaged to give the values used. Having established values for the second order coefficients, Hardie's equations 26 were used to determine the first order coefficients, namely, $$(b - v)J_{x} = k'_{bv}X + (b - v)_{o}$$, $(u - b)G_{x} = k'_{ub}X + (u - b)_{o}$, where $J_X = 1 - k_{bv}^{"}X$ and $G_X = 1 - k_{ub}^{"}X$. The first order coefficients were calculated for each star and straight means taken to give the results of Table 10. The primary coefficient k_v is given by Hardie's equation 22, $$v_0 = v - k_v X$$. The coefficient $k_{_{\rm V}}$ was also calculated for each star and means taken. The large differences in the standard errors quoted for the two telescopes are misleading in that the error shown for the thirty-inch telescope results from two nights and that from the eighteen-inch telescope from only one. The latter error is more typical of the single night error for the primary coefficient, whereas the former error is useful for showing, but not strictly indicative of, the range of $k_{_{\rm V}}$ for photometric nights. ${\bf Table~10}$ Extinction Coefficients and Auxiliary Quantities | | Telesc | ope 70 inch | |----------------|---------------|----------------| | | 18 inch | 30 inch | | k _v | 0.26
± 2 | 0.32
± 9 | | k'bv | 0.15
± 1 | 0.18
± 3 | | k"bv | -0.050
± 9 | -0.035
± 8 | | k'ub | | 0.36
± 5 | | k''ub | | 0.001
± 12 | | μ | 1.039
± 11 | 1.185
± 16 | | ε | 0.019
± 10 | -0.144
± 11 | | ψ | | 0.986
± 20 | Three auxiliary quantities are needed before the transformation to the standard system can be done. These quantities, μ , ϵ , ψ , are found by linear regressions of (V - v_0) with (B - V) for ϵ , (B - V) - (b - v) with (B - V) for μ , and (U - B) - (u - b) with (U - B) for ψ . Upper case letters here stand for magnitudes in Table 8. The differential magnitudes for the variable were then transformed to the standard system via Hardie's equations 28, $$\Delta V = \Delta v - k_{V} \Delta X + \varepsilon \Delta (B - V) ,$$ $$\Delta (B - V) = \mu \Delta (b - v) - \mu k_{bv}' \Delta X - \mu k_{bv}'' \Delta (b - v) \overline{X} ,$$ $$\Delta (U - B) = \psi \Delta (u - b) - \psi k_{ub}' \Delta X - \psi k_{ub}'' \Delta (u - b) \overline{X} .$$ Here Δ stands for differential quantities and \overline{X} is the mean air mass for the variable and comparison. The differential air mass, ΔX , is given by, $$\Delta X = (P \sin \overline{h} + Q \cos \overline{h} + R) \overline{X}^2,$$ where \overline{h} is the mean hour angle between the variable and comparison (positive east) and, $$P = \Delta\alpha\cos\phi \cos\overline{\delta} ,$$ $$Q = \Delta\delta\cos\phi \sin\overline{\delta} ,$$ $$R = -\Delta\delta\sin\phi \cos\overline{\delta} .$$ Here $\Delta\alpha$ and $\Delta\delta$ are the differences in right ascension and declination in radians, respectively, and ϕ is the observer's latitude. P, Q, R are constant for a pair of stars and at Rosemary Hill Observatory have the values, $$\begin{array}{c} P = 0.00248 \\ Q = 0.00046 \\ R = -0.00004 \end{array} \right\} \hspace{0.5cm} BD+81^{\circ}29 \,, \hspace{0.5cm} Q = 0.00130 \\ R = 0.00011 \end{array} \right\} \hspace{0.5cm} BD+81^{\circ}30 \,.$$ # The Comparison Stars My original choice of a comparison star was BD+81 $^{\circ}$ 30. This star has colors strikingly close to the variable and its proximity was also alluring. An early paper on U Cephei (Dugan, 1920), however, indicates that this star may be variable. It is interesting to note that most observers of U Cephei still use BD+81°30 as a comparison despite the warning. This may be due to the difficulty in finding a nearby star of substantially the same colors or finding any color information on the nearby stars. All data until 15 April 1975, used BD+81°27 as a check. On 15 April 1975, and for all subsequent data, BD+81°29 was used as a comparison and BD+81°30 as a check. This change required that data taken earlier be transformed to the new comparison star. Table 11 gives the pertinent information for all stars used. Table 11 Data for the Comparison Stars | Star | RA (1975.0) Dec | | V | B - V | U - B | |----------|--|------------|-------------------|----------------------|---------------------| | BD+81°30 | 1 ^h 03 ^m 06 ^s | 81°49'43'' | 7 ^m 89 | 0 ^m 0 1 9 | -0 ^m 080 | | BD+81°27 | 1 01 30 | 81 58 12 | 8.41 | ∿0.6 | ∿0.1 | | BD+81°29 | 1 02 17 | 82 06 58 | 8.58 | 0.49 | ∿0.0 | Figure 2 shows the differential magnitude (BD+81°30 - BD+81°29) versus time for the three colors used. This figure indicates no trends or unusual fluctuations. Nights on which BD+81°30 was used as a comparison required the addition to the data of the magnitude difference between BD+81°30 and Magnitude difference (BD+81 $^{\circ}30$ - BD+81 $^{\circ}29$) versus time. Figure 2. BD+81 29 to transform them to differential measures with respect to BD+81 29. These magnitude differences on the natural photometric system are listed below. | | Telescope | | | |---|---------------|-------------|--| | | eighteen-inch | thirty-inch | | | ν | -0.55 | -0.65 | | | b | -1.13 | -1.17 | | | u | | -1.47 | | | | | | | After all corrections were made, an inspection of the light curve reveals no systematic deviations between nights on the eighteen-inch and thirty-inch telescopes with either comparison star. Thus all transformations are compatible. The data reduced to the standard system were thoroughly scanned and compared to the chart records to eliminate data suspected of being affected by weather. These scanned data are presented tabularly in Table 12 and as the light curves of Figure 3. The phase has been claculated using the ephemeris Min JD = 2442352.6999 + 2.4930709 • E (see Chapter VI). Two major outbursts were noted, one in August 1974, and one in September/October 1975. Data around these dates were eliminated from the initial analysis in an attempt to obtain less perturbed light curves for solution. Specifically, the nights of 31 October; 10 and 15 November 1974; 18 and 25 #### TABLE 12 STANDARU DIFFERENTIAL MAGNITUDES U CEPHEI | HEL JU
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | |----------------------|--------|----------------------|--------|----------------------|--------| | 2352.54285 | -1.343 | 2362.59536 | -0.372 | 2302.73115 | -0.054 | | 2352.54980 | -1.309 | 2362.59860 | -5.288 |
2362.7346+ | -0.133 | | 2352.55484 | -1.206 | 2362.39952 | -0.284 | 2362.73502 | -0.152 | | 2352.55935 | -1.223 | 2562.60357 | -0.224 | 2302.73991 | -0.238 | | 2352.56369 | -1.174 | 2362.60363 | -0.186 | 2362.7442+ | -0.329 | | 2352.50853 | -1.137 | 2302.00451 | -0.144 | 2302.74 30+ | +0.359 | | 2352.57443 | -1.670 | 2362.00563 | -0.166 | 2302.74 933 | +0.451 | | 2352.59655 | -6.773 | 2362.00353 | -0.651 | 2362.74 933 | +0.451 | | 2352.60151 | -6.700 | 2362.00419 | -0.043 | 2302.7503 | +0.462 | | 2352.61180 | -6.307 | 2362.01067 | -0.012 | 2302.75401 | +0.511 | | 2352.61911 | -0.352 | 2362.61461 | 0.079 | 2302.73089 | -0.531 | | 2352.62444 | -0.223 | 2362.61463 | 0.089 | 2302.75945 | -0.569 | | 2352.63415 | -0.077 | 2362.61538 | 0.152 | 2302.75532 | -0.659 | | 2352.63549 | 0.001 | 2362.61914 | 0.245 | 2362.75534 | -0.933 | | 2352.64242 | 6.250 | 2362.62211 | 0.299 | 2302.76912 | -0.747 | | 2352.64323 | 0.391 | 2362.02570 | 0.393 | 2302.77265 | -0.830 | | 2352.65498 | 0.565 | 2502.62657 | 0.421 | 2302.77349 | +0.317 | | 2352.66430 | 0.686 | 2302.62759 | 0.443 | 2302.76201 | -0.947 | | 2352.67201 | 6.684 | 2302.63113 | 0.51c | 2302.76992 | -1.314 | | 2362.50637 | -1.395 | 2362.63213 | 0.500 | 2302.79630 | -1.034 | | 2362.51319 | -1.502 | 2362.03273 | 0.590 | 2302.80215 | -1.135 | | 2362.51822 | -1.528 | 2362.03029 | 0.638 | 2302.61975 | -1.214 | | 2362.52401 | -1.290 | 2302.03744 | 0.535 | 2302.61994 | -1.255 | | 2362.52707 | -1.255 | 2302.03071 | 0.545 | 2302.52934 | -1.334 | | 2362.53036 | -1.222 | 2302.04080 | 0.590 | 2302.82992 | -1.301 | | 2362.53517 | -1.197 | 2502.04809 | 0.697 | 2367.50342 | -1.303 | | 2362.53911 | -1.154 | 2362.04873 | 3.726 | 2367.50743 | -1.323 | | 2362.54253 | -1.132 | 2502.64900 | 0.763 | 2367.50843 | -1.317 | | 2362.54594 | -1.101 | 2502.60031 | 0.746 | 2367.51329 | -1.276 | | 2362.54936 | -1.003 | 2302.66741 | 3.731 | 2367.51451 | -1.265 | | 2362.54963 | -1.003 | 2362.67952 | 0.740 | 2367.51775 | -1.219 | | 2362.55081 | -0.900 | 2362.68637 | 0.744 | 2367.51867 | -1.210 | | 2362.56301 | -0.930 | 2362.68635 | 0.737 | 2367.52214 | -1.172 | | 2362.56325 | -0.808 | 2362.60773 | 0.732 | 2367.52335 | -1.109 | | 2362.56439 | -0.865 | 2362.69260 | 0.007 | 2367.52633 | -1.141 | | 2302.56753 | -0.840 | 2362-69316 | 0.644 | 2367-52705 | -1.131 | | 2302.56828 | -0.628 | 2362-69675 | 0.644 | 2367-53029 | -1.098 | | 2362.57065 | -0.785 | 2362-69982 | 0.582 | 2367-53134 | -1.087 | | 2362.57130 | -0.759 | 2362-70069 | 0.593 | 2367-53475 | -1.329 | | 2362.57394 | -0.757 | 2362-70762 | 0.471 | 2367-53603 | -1.014 | | 2362.57499 | -0.733 | 2362.70872 | 0.452 | 2367.53874 | -0.980 | | 2362.57928 | -0.070 | 2362.71253 | 0.300 | 2307.53949 | -0.960 | | 2362.58325 | -0.055 | 2362.71383 | 0.355 | 2307.54205 | -0.932 | | 2362.58426 | -0.598 | 2362.71839 | 0.241 | 2367.54373 | -0.911 | | 2362.58471 | -0.576 | 2362.71931 | 0.221 | 2367.54632 | -0.870 | | 2362.58541 | -0.549 | 2302.71994 | 0.208 | 2367.54714 | -0.871 | | 2362.58343 | -0.512 | 2302.72487 | 0.090 | 2367.54969 | -0.832 | | 2362.58922 | -0.502 | 2302.72555 | 0.070 | 2367.55691 | -0.822 | | 2362.59015 | -0.481 | 2302.72931 | -0.007 | 2367.55385 | -0.783 | | 2362.59426 | -0.403 | 2302.73036 | -0.634 | 2367.55460 | -0.771 | #### TABLE 12 (CUNT'D) #### V15UAL | HEL JD
(2440000+) | DMAG. | HEL JD
(2446000+) | DMAG. | HEL JU
(2440000+) | DMAG. | |--|---|--|--|--|--------------------------------------| | 2367.55791 | -0.757 | 2307.68514 | 0.719 | 2491.57121 | -1.043 | | 2367.55871 | -0.716 | 2367.68429 | 0.719 | 2491.5809s | -1.022 | | 2367.56278 | -0.691 | 2367.68950 | 0.655 | 2491.58345 | -1.033 | | 2367.56347 | -0.686 | 2367.69023 | 0.053 | 2491.59265 | +1.027 | | 2367.56758 | -0.616 | 2367.69361 | 0.613 | 2491.59717 | -1.035 | | 2367.56821 | -0.598 | 2367.09443 | 0.003 | 2491.59915 | -1.029 | | 2367.57110 | -0.539 | 2367.09837 | 0.551 | 2491.60355 | -1.004 | | 2367.57198 | -0.531 | 2367.09965 | 0.545 | 2491.60354 | -1.010 | | 2367.57544 | -0.479 | 2367.70254 | 0.502 | 2491.61153 | -1.027 | | 2367.57659 | -0.403 | 2367.70539 | 0.501 | 2491.61397 | -1.025 | | 2367.57938 | -0.385 | 2367.70688 | 0.418 | 2491.01744 | -1.020 | | 2367.58018 | -0.372 | 2367.70780 | 0.417 | 2491.01933 | -1.021 | | 2367.58307 | -0.327 | 2367.71034 | 0.338 | 2491.62302 | -1.021 | | 2367.58359 | -0.307 | 2367.71301 | 0.293 | 2491.02524 | -1.530 | | 2367.58429 | -0.206 | 2567.71363 | 0.270 | 2491.63937 | -1.023 | | 2367.58713 | -0.199 | 2307.71512 | 0.101 | 2491.64202 | -1.923 | | 2367.58776 | -0.173 | 2367.71695 | 0.140 | 2491.04371 | -1.017 | | 2367.58828 | -0.146 | 2367.71747 | 0.140 | 2491.05009 | -1.000 | | 2367.58880 | +0.127 | 2367.71971 | 0.094 | 2491.05553 | -1.011 | | 2367.59177 | -0.597 | 2367.72641 | 0.080 | 2491.05745 | -1.094 | | 2367.59262
2367.59367
2367.59888
2367.59992
2367.60132 | -0.089
-0.095
0.119
0.106
0.202 | 2367.72562
2367.72632
2367.72926
2367.72996
2367.73286 | -0.046
-0.058
-0.120
-0.142
-0.196 | 2491.6646.
2491.66535
2491.66939
2491.67275
2491.67727 | -1.070
-1.091
-1.090
-1.003 | | 2367.60790 | 0.488 | 2307.73369 | -0.225 | 2491.0730+ | -1.399 | | 2367.60895 | 0.488 | 2367.73604 | -0.203 | 2491.06072 | -1.003 | | 2367.61757 | 6.599 | 2367.73674 | -0.239 | 2491.03004 | -1.393 | | 2367.61924 | 6.657 | 2367.73946 | -0.353 | 2493.54200 | -1.490 | | 2367.62336 | 0.623 | 2367.74003 | -0.363 | 2493.54223 | -1.319 | | 2367.62458 | 0.052 | 2307.74280 | -0.430 | 2493.55125 | -1.597 | | 2367.62922 | 0.727 | 2367.74343 | -0.448 | 2493.5537. | +1.517 | | 2367.63066 | 0.736 | 2367.74652 | -0.509 | 2493.55831 | -1.535 | | 2367.63637 | 0.721 | 2367.74714 | -0.514 | 2493.55994 | -1.623 | | 2367.63789 | 0.721 | 2367.75322 | -0.643 | 2493.56729 | -1.544 | | 2367.64176 | 0.758 | 2307.75375 | -0.659 | 2493.59781 | -1.580 | | 2367.64268 | 0.755 | 2367.75669 | -0.679 | 2493.5984. | -1.583 | | 2367.64749 | 0.755 | 2367.75773 | -0.690 | 2493.60007 | -1.589 | | 2367.64854 | 0.727 | 2367.76023 | -0.745 | 2493.60495 | -1.586 | | 2367.65235 | 0.713 | 2367.76083 | -0.754 | 2493.60561 | -1.379 | | 2367.65300 | 0.754 | 2307.76452 | -0.826 | 2493.61371 | +1.558 | | 2367.65392 | 0.748 | 2367.76486 | -0.817 | 2493.61453 | -1.571 | | 2367.66033 | 0.721 | 2367.76574 | -0.522 | 2493.61862 | -1.580 | | 2367.66115 | 0.720 | 2367.76885 | -0.870 | 2493.63450 | -1.590 | | 2367.66641 | 0.775 | 2367.76973 | -0.878 | 2493.63545 | -1.572 | | 2367.66729 | 0.761 | 2367.79017 | -1.149 | 2493.64390 | -1.563 | | 2367.67389 | 0.745 | 2367.79520 | -1.171 | 2493.65175 | -1.563 | | 2367.67464 | 0.745 | 2367.80221 | -1.239 | 2493.65235 | -1.650 | | 2367.67840 | 0.719 | 2491.55832 | -1.640 | 2493.67055 | -1.558 | | 2367.67933 | 0.723 | 2491.57034 | -1.668 | 2497.57757 | -1.559 | ## TABLE 12 (CONT'D) | HEL JD
(2440003+) | DMAG. | HEL JU
(2440000+) | DMAG. | HEL JU
(2440000+) | DMAG. | |--|--|--|--------------------------------------|--|--| | 2497.57889 | -1.054 | 2497.75920 | -1.661 | 2497.90743 | -1.045 | | 2497.58400 | -1.052 | 2497.75989 | -1.679 | 2497.90545 | -1.038 | | 2497.58764 | -1.053 | 2497.74057 | -1.677 | 2497.9151 | -1.043 | | 2497.58896 | -1.045 | 2497.74127 | -1.075 | 2497.91715 | -1.030 | | 2497.59303 | -1.054 | 2497.74190 | -1.673 | 2507.57985 | -1.035 | | 2497.59407 | -1.054 | 2497.74260 | -1.672 | 250 7 • 52568 | -1.903 | | 2497.59754 | -1.050 | 2497.74336 | -1.670 | 250 7 • 59745 | -1.512 | | 2497.59676 | -1.042 | 2497.74959 | -1.639 | 250 7 • 6 • 577 | -1.504 | | 2497.60253 | -1.018 | 2497.75029 | -1.649 | 250 7 • 6 • 867 | -1.003 | | 2497.60355 | -1.033 | 2497.73099 | -1.609 | 250 7 • 60 941 | -1.500 | | 2497.60534 | -1.093 | 2497.75777 | -1.651 | 2507.61203 | -1.587 | | 2497.60901 | -1.049 | 2497.75767 | -1.557 | 2537.61273 | -1.593 | | 2497.61038 | -1.647 | 2497.7654 | -1.651 | 2537.61229 | -1.593 | | 2497.61404 | -1.008 | 2497.77355 | -1.647 | 2507.61915 | -1.505 | | 2497.61549 | -1.051 | 2497.77393 | -1.637 | 2507.61975 | -1.591 | | 2497.62451 | -1.054 | 2497.77369 | -1.633 | 2507.62433 | -1.597 | | 2497.62584 | -1.050 | 2497.77998 | -1.036 | 2537.62512 | -1.615 | | 2497.63140 | -1.051 | 2497.70357 | -1.031 | 2507.62571 | -1.605 | | 2497.63279 | -1.059 | 2497.78464 | -1.647 | 2507.6252 | -1.594 | | 2497.63071 | -1.017 | 2497.78661 | -1.663 | 2507.63615 | -1.511 | | 2497.63800
2497.64109
2497.64291
2497.64720
2497.64992 | -1.031
-1.034
-1.031
-1.039
-1.030 | 2497.78971
2497.79387
2497.79514
2497.79953
2497.86005 | -1.625
-1.635
-1.637
-1.620 | 2507.65709
2507.64011
2507.64085
2507.64087
2507.64484 | -1.670
-1.670
-1.661
-1.661
-1.669 | | 2497.05189 | -1.076 | 2497.50394 | -1.017 | 2507.64751 | -1.600 | | 2497.65570 | -1.039 | 2497.50504 | -1.025 | 2507.64633 | -1.504 | | 2497.05762 | -1.041 | 2497.80888 | -1.026 | 2507.65136 | -1.595 | | 2497.60074 | -1.050 | 2497.80997 | -1.614 | 2507.65302 | -1.545 | | 2497.60144 | -1.047 | 2497.81471 | -1.027 | 2507.65147 | -1.607 | | 2497.60214 | -1.047 | 2497.81593 | -1.637 | 2507.68009 | -1.5d5 | | 2497.60842 | -1.573 | 2497.82364 | -1.637 | 2507.68139 | -1.5d2 | | 2497.60974 | -1.584 | 2497.82478 | -1.630 | 2507.69311 | -1.611 | | 2497.67373 | -1.599 | 2497.82900 | -1.632 | 2507.69642 | -1.587 | | 2497.67512 | -1.052 | 2497.83548 | -1.644 | 2507.69712 | -1.597 | | 2497.67981 | -1.046 | 2497.84266 | -1.642 | 2507.70123 |
-1.604 | | 2497.63103 | -1.047 | 2497.84371 | -1.644 | 2507.70274 | -1.605 | | 2497.68542 | -1.055 | 2497.84709 | -1.651 | 2507.77394 | -1.606 | | 2497.68559 | -1.057 | 2497.84874 | -1.645 | 2507.75602 | -1.598 | | 2497.69160 | -1.005 | 2497.85250 | -1.655 | 2507.78077 | -1.593 | | 2497.69282 | -1.072 | 2497.85378 | -1.000 | 2509.55281 | -1.568 | | 2497.69054 | -1.000 | 2497.85829 | -1.000 | 2509.55361 | -1.555 | | 2497.69769 | -1.049 | 2497.85909 | -1.009 | 2509.55374 | -1.541 | | 2497.70180 | -1.045 | 2497.87504 | -1.002 | 2509.55219 | -1.512 | | 2497.70307 | -1.024 | 2497.87088 | -1.004 | 2509.56305 | -1.568 | | 2497.70893 | -1.013 | 2497.87774 | -1.659 | 2509.5550u | -1.525 | | 2497.71524 | -1.041 | 2497.88277 | -1.654 | 2509.5003u | -1.531 | | 2497.71051 | -1.052 | 2497.88399 | -1.641 | 2509.50894 | -1.522 | | 2497.72154 | -1.088 | 2497.89977 | -1.631 | 2509.56904 | -1.521 | | 2497.72292 | -1.091 | 2497.90082 | -1.635 | 2509.57191 | -1.504 | ## TABLE 12(CONT'D) | HEL JU
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | HEL JJ
(2440000+) | DAAG. | |--|--|--|--|--|---| | 2509.57261 | -1.515 | 2509.65819 | -0.801 | 2518.69324 | -1.505 | | 2509.57537 | -1.505 | 2509.66134 | -0.745 | 2518.7130, | -1.545 | | 2509.57607 | -1.506 | 2509.56261 | -0.733 | 2518.7233 | -1.573 | | 2509.57632 | -1.492 | 2509.66515 | -0.730 | 2510.7430, | -1.567 | | 2509.57901 | -1.495 | 2509.66585 | -0.697 | 2518.75387 | -1.014 | | 2509.58128 | -1.474 | 2509.00792 | -0.647 | 2518.76505 | -1.504 | | 2509.58198 | -1.471 | 2509.05801 | -0.642 | 2518.77122 | -1.507 | | 2509.58422 | -1.407 | 2509.57171 | -0.602 | 2518.77595 | -1.541 | | 2509.58492 | -1.407 | 2509.57240 | -0.510 | 2518.78049 | -1.547 | | 2509.58839 | -1.449 | 2509.67450 | -0.569 | 2518.73495 | -1.560 | | 2509.58909 | -1.455 | 2509.67520 | -0.542 | 2518.78909 | -1.006 | | 2509.59135 | -1.454 | 2509.67779 | -0.478 | 2518.79502 | -1.012 | | 2509.59223 | -1.457 | 2509.67849 | -0.463 | 2518.80103 | -1.015 | | 2509.59465 | -1.419 | 2569.68145 | -0.413 | 2518.82277 | -1.005 | | 2509.59534 | -1.411 | 2509.68213 | -0.597 | 2518.82364 | -1.025 | | 2509.59779
2509.59846
2509.60055
2509.60125
2509.60419 | -1.407
-1.407
-1.393
-1.379
-1.350 | 2509.69255
2509.69525
2509.69504
2509.70140
2509.70210 | -0.113
-0.030
0.075
0.142
0.160 | 2518.63601
2513.85005
2518.8610+
2518.859+9
2518.87620 | -1.091
-1.012
-1.079
-1.090 | | 2509.60439
2509.60734
2509.60801
2509.60803
2509.61132 | -1.560
-1.341
-1.335
-1.525 | 2509.70279
2509.70559
2509.71010
2509.71045
2509.71553 | 0.178
0.202
0.201
0.301
0.470 | 2524.555475
2524.59565
2524.66395
2524.653779
2524.61355 | -1.131
-18
-395
-321
-6.713 | | 2509.61444 | -1.299 | 2009.71912 | 0.579 | 2524.0100. | -3.001 | | 2509.61514 | -1.293 | 2509.72224 | 0.543 | 2024.02200 | -3.000 | | 2509.01723 | -1.290 | 2509.72563 | 0.514 | 2524.62007 | -3.015 | | 2509.61791 | -1.272 | 2509.72053 | 0.533 | 2024.00100 | -0.437 | | 2509.62127 | -1.232 | 2509.73174 | 0.707 | 2524.6361+ | -6.373 | | 2509.62192 | -1.220 | 2509.73528 | 0.785 | 2524.043 9+ | -0.104 | | 2509.62451 | -1.199 | 2509.73909 | 0.754 | 2524.04795 | 0.000 | | 2509.62521 | -1.204 | 2509.74273 | 0.765 | 2524.05239 | 0.155 | | 2509.62763 | -1.190 | 2509.74760 | 0.776 | 2524.05323 | 0.297 | | 2509.62833 | -1.207 | 2509.75315 | 0.730 | 2524.05152 | 0.360 | | 2509.63199 | -1.111 | 2509.75924 | 0.835 | 2524.60350 | 0.418 | | 2509.63266 | -1.162 | 2509.77200 | 0.757 | 2524.67331 | 0.508 | | 2509.63857 | -1.028 | 2518.61009 | -1.515 | 2524.67317 | 0.741 | | 2509.63927 | -1.009 | 2518.61550 | -1.509 | 2524.65244 | 0.732 | | 2509.64171 | -1.022 | 2518.62208 | -1.5+0 | 2524.71063 | 0.531 | | 2509.64239 | -1.050 | 2516.62592 | -1.539 | 2524.71941 | 0.310 | | 2509.64553 | -0.970 | 2516.63095 | -1.537 | 2524.72432 | 0.738 | | 2509.64623 | -0.954 | 2516.63926 | -1.560 | 2524.73155 | 0.55 | | 2509.64847 | -0.921 | 2516.64374 | -1.558 | 2524.73589 | 0.738 | | 2509.64917 | -0.915 | 2516.65005 | -1.567 | 2524.73399 | 0.753 | | 2509.65161
2509.65229
2509.65455
2509.6525
2509.65750 | -0.887
-0.874
-0.855
-0.848
-0.813 | 2518.65499
2518.66010
2518.66551
2518.67528 | -1.603
-1.591
-1.625
-1.581
-1.540 | 2524.74414
2524.74365
2524.75369
2525.550d9
2525.56790 | 0.775
0.775
0.838
-1.506
-1.371 | ## TABLE 12(CUNT'D) | HEL JD
(2440000+) | DMAG. | HEL JÜ
(2440000+) | DMAG. | HEL JU
(2440000+) | DMAG. | |--|--|--|--|--|--| | 2525.57154 | -1.590 | 2642.05030 | -1.584 | 2046.79049 | - 7. J30 | | 2525.58119 | -1.041 | 2642.00340 | -1.028 | 2040.80013 | - 0. 265 | | 2525.58650 | -1.507 | 2642.00700 | -1.575 | 2040.80377 | - 0. 164 | | 2525.59263 | -1.590 | 2642.67160 | -1.591 | 2040.80758 | - J. J85 | | 2525.59372 | -1.587 | 2642.07004 | -1.004 | 2646.81175 | 0. 0.4 | | 2525.60011 | -1.571 | 2642.08387 | -1.503 | 2040.81035 | 0.202 | | 2525.60303 | -1.509 | 2042.09000 | -1.590 | 2040.82042 | 0.322 | | 2525.60699 | -1.580 | 2042.76155 | -1.617 | 2040.82429 | 0.426 | | 2525.61275 | -1.621 | 2042.70043 | -1.610 | 2046.82915 | 0.545 | | 2525.63162 | -1.587 | 2642.71042 | -1.600 | 2046.85519 | 0.545 | | 2525.63610 | -1.005 | 2042.71450 | -1.537 | 2640.85812 | 0.684 | | 2525.03988 | -1.006 | 2042.71512 | -1.536 | 2640.8445u | 0.682 | | 2525.04354 | -1.595 | 2042.72450 | -1.013 | 2640.85211 | 0.701 | | 2525.05167 | -1.582 | 2642.7207J | -1.561 | 2646.85627 | 0.658 | | 2525.05075 | -1.597 | 2042.73219 | -1.607 | 2546.85156 | 0.735 | | 2525.00210 | -1.575 | 2042.74373 | -1.618 | 2646.86497 | 0.736 | | 2525.6633 | -1.576 | 2642.74961 | -1.629 | 2040.869nb | 0.6:1 | | 2525.66879 | -1.564 | 2042.70318 | -1.622 | 2646.87457 | 0.609 | | 2525.67435 | -1.601 | 2642.70301 | -1.621 | 2940.8782b | 0.701 | | 2525.67765 | -1.578 | 2042.70302 | -1.521 | 2946.85754 | 6.712 | | 2525.68779 | -1.584 | 2042.70002 | -1.632 | 2000-63239 | -1.001 | | 2525.69141 | -1.615 | 2042.77300 | -1.628 | 2600-60832 | -1.000 | | 2525.69532 | -1.631 | 2042.77710 | -1.663 | 2630-69109 | -1.097 | | 2525.70736 | -1.569 | 2042.78073 | -1.590 | 2630-69312 | -1.002 | | 2525.71178 | -1.582 | 2042.78407 | -1.630 | 2630-7,173 | -1.003 | | 2525.71601 | -1.005 | 2642.76738 | -1.011 | 2050.705%3 | -1.001 | | 2525.72319 | -1.065 | 2642.79382 | -1.045 | 2050.71115 | -1.002 | | 2525.72634 | -1.552 | 2642.79518 | -1.570 | 2050.71950 | -1.003 | | 2525.72980 | -1.555 | 2642.80294 | -1.532 | 2050.71950 | -1.099 | | 2525.73474 | -1.597 | 2642.86982 | -1.591 | 2050.72432 | -1.092 | | 2525.73952
2525.74299
2525.79587
2525.80158
2525.81030 | -1.585
-1.511
-1.522
-1.595
-1.554 | 2642.81954
2642.82553
2642.83236
2642.83236
2642.86978
2042.86024 | -1.582
-1.589
-1.589
-1.500
-1.581 | 2050.73270
2050.73400
2650.73771
2030.74128
2050.74031 | -1.573
-1.014
-1.017
-1.603
-1.597 | | 2525.81741 | -1.005 | 2042.87177 | -1.585 | 2650.75023 | -1.534 | | 2525.82115 | -1.591 | 2040.69940 | -1.442 | 2650.75444 | -1.309 | | 2525.82500 | -1.584 | 2646.76009 | -1.399 | 2650.75328 | -1.019 | | 2525.83237 | -1.001 | 2046.71025 | -1.390 | 2650.7545+ | -1.010 | | 2525.83010 | -1.002 | 2040.71457 | -1.341 | 2650.7633 | -1.015 | | 2525.84049 | -1.575 | 2040.72070 | -1.347 | 2650.81075 | -1.593 | | 2525.34460 | -1.589 | 2040.75005 | -0.999 | 2650.81054 | -1.501 | | 2525.85214 | -1.575 | 2040.76171 | -6.921 | 2650.81961 | -1.021 | | 2525.85712 | -1.570 | 2040.70030 | -0.850 | 2650.81257 | -1.014 | | 2525.86542 | -1.576 | 2040.77140 | -0.796 | 2650.82257 | -1.599 | | 2525.87098 | -1.591 | 2646.77744 | -0.686 | 2050.82375 | -1.592 | | 2642.63104 | -1.004 | 2046.78123 | -0.664 | 2650.6323) | -1.013 | | 2642.63964 | -1.592 | 2646.76516 | -0.572 | 2650.83041 | -1.017 | | 2642.64518 | -1.570 | 2646.78569 | -0.573 | 2650.83903 | -1.010 | | 2642.65089 | -1.569 | 2646.79011 | -0.492 | 2650.84249 | -1.020 | ## TABLE 12 (CONT'D) | HEL JD
(2440000+) | DMAG. | HEL JU
(2440000+) | DMAG. | HEL JU
(2443000+) | DMAG. | |--|--|--|--|--|--------------------------------------| | 2650.84955 | -1.655 | 2698.59029 | -1 • 4 7 7 | 2701.60.055 | -1.128 | | 2674.71674 | -1.620 | 2098.59517 | -1 • 4 5 1 | 2701.61022 | -1.043 | | 2074.72230 | -1.580 | 2098.60030 | -1 • 4 7 0 | 2701.61030 | -0.979 | | 2074.72614 | -1.601 | 2098.60036 | -1 • 4 7 7 | 2701.61800 | -0.944 | | 2674.73175 | -1.599 | 2098.60075 | -1 • 4 9 1 | 2707.61013 | -1.035 | | 2674.73584 | -1.580 | 2098.01031 | -1 • 473 | 2707.63231 | -1.040 | | 2074.73973 | -1.570 | 2098.02083 | -1 • 475 | 2707.63304 | -1.600 | | 2674.74020 | -1.556 | 2098.02004 | -1 • 475 | 2707.64222 | -1.040 | | 2674.75321 | -1.591 | 2090.03100 | -1 • 463 | 2707.64039 | -1.637 | | 2074.76119 | -1.578 | 2098.03081 | -1 • 564 | 2707.65232 | -1.030 | | 2674.76573 | -1.506 | 2698.64367 | -1.460 | 2707.65081 | -1.623 | | 2674.77161 | -1.587 | 2098.04758 | -1.523 |
2707.60107 | -1.627 | | 2674.77784 | -1.553 | 2698.65174 | -1.517 | 2707.65584 | -1.625 | | 2674.78490 | -1.555 | 2698.05590 | -1.561 | 2707.67312 | -1.629 | | 2674.79033 | -1.550 | 2098.60503 | -1.501 | 2707.67833 | -1.623 | | 2674.79520 | -1.551 | 2698,66974 | -1.525 | 2707.63319 | -1.048 | | 2674.80233 | -1.557 | 2098,67553 | -1.512 | 2707.63735 | -1.053 | | 2674.80781 | -1.575 | 2698,69028 | -1.533 | 2707.63735 | -1.055 | | 2674.81188 | -1.554 | 2698,69084 | -1.519 | 2707.69777 | -1.547 | | 2674.81004 | -1.559 | 2698,70277 | -1.520 | 2707.7.194 | -1.642 | | 2674 • 82090 | -1.559 | 2098.70694 | -1.522 | 2707.71 029 | -1.605 | | 2674 • 62576 | -1.525 | 2098.71250 | -1.535 | 2707.71440 | +1.671 | | 2674 • 82992 | -1.542 | 2098.71000 | -1.504 | 2707.71931 | -1.6034 | | 2681 • 68430 | -0.812 | 2098.72292 | -1.545 | 2707.72402 | -1.615 | | 2661 • 69178 | -0.751 | 2098.75022 | -1.556 | 2707.70200 | -1.604 | | 2681.69519
2681.69918
2681.70225
2681.70537
2681.70960 | -0.673
-0.589
-0.555
-0.512
-0.403 | 2090.73506
2696.73925
2098.74723
2098.75209
2090.75181 | -1.544
-1.560
-1.527
-1.525
-1.537 | 2707.75007
2707.74155
2707.74565
2707.75145
2707.75011 | -1.615
-1.635
-1.632
-1.633 | | 2681.71357 | -0.320 | 2098.70737 | -1.540 | 2707.70107 | -1.597 | | 2681.71392 | -0.328 | 2098.77467 | -1.549 | 2707.7555 | -1.632 | | 2681.72035 | -0.245 | 2098.77954 | -1.557 | 2707.77279 | -1.394 | | 2681.82516 | 0.523 | 2098.78402 | -1.562 | 2707.77530 | -1.610 | | 2681.83072 | 0.439 | 2098.78950 | -1.573 | 2707.76251 | -1.633 | | 2681 • 83466 | 0.358 | 2090.7941J | -1.573 | 2707.76737 | -1.010 | | 2698 • 51804 | -1.422 | 2096.79861 | -1.509 | 2707.79154 | -1.035 | | 2698 • 52430 | -1.414 | 2090.00414 | -1.544 | 2707.79046 | -1.007 | | 2698 • 52546 | -1.463 | 2098.60790 | -1.553 | 2707.80749 | -1.564 | | 2698 • 53332 | -1.443 | 2701.53914 | -1.593 | 2707.81235 | -1.593 | | 2698.53818 | -1.454 | 2701.54575 | -1.574 | 2707.8180. | -1.500 | | 2698.54304 | -1.441 | 2701.55048 | -1.558 | 2707.52834 | -1.572 | | 2698.54790 | -1.454 | 2701.55420 | -1.556 | 2707.83320 | -1.577 | | 2698.55207 | -1.598 | 2701.55986 | -1.500 | 2707.83325 | -1.505 | | 2698.550007 | -1.441 | 2701.56402 | -1.488 | 2707.84432 | -1.607 | | 2698 • 56458 | -1.439 | 2701.56853 | -1.452 | 2707.85192 | -1.573 | | 2698 • 57396 | -1.455 | 2701.58474 | -1.356 | 2707.85815 | -1.573 | | 2698 • 57812 | -1.450 | 2701.58925 | -1.306 | 2707.80444 | -1.559 | | 2698 • 58228 | -1.459 | 2701.59337 | -1.271 | 2707.80930 | -1.545 | | 2698 • 58610 | -1.470 | 2701.5976J | -1.195 | 2707.87435 | -1.571 | ## TABLE 12 (CUNT 10) | HEL JO
(2440000+) | DMAG. | HEL JO
(2440000+) | DMAG. | mEL JD
(24400cJ+) | DWAG. | |--|--|--|--------------------------------------|--|--| | 2707.87902 | -1.558 | 2812.56975 | -1.578 | 2817.00740 | -1.005 | | 2707.88458 | -1.558 | 2812.57404 | -1.588 | 2017.64120 | -1.507 | | 2707.89037 | -1.537 | 2812.58059 | -1.572 | 2817.04793 | -1.500 | | 2707.90123 | -1.542 | 2812.58518 | -1.582 | 2817.00222 | -1.008 | | 2707.91026 | -1.558 | 2812.58977 | -1.575 | 2817.60330 | -1.043 | | 2707.91442 | -1.555 | 2012.593c0 | -1.579 | 2817.603)2 | -1.544 | | 2709.01375 | -1.569 | 2012.59770 | -1.574 | 2817.00660 | -1.537 | | 2709.01375 | -1.594 | 2312.61141 | -1.574 | 2817.07232 | -1.554 | | 2709.02280 | -1.587 | 2012.62397 | -1.559 | 2817.67763 | -1.357 | | 2709.62700 | -1.569 | 2312.62796 | -1.551 | 2817.60349 | -1.510 | | 2709.63344 | -1.590 | 2612.03168 | -1.551 | 2817.68700 | -1.515 | | 2709.63766 | -1.597 | 2612.03554 | -1.554 | 2817.69280 | -1.549 | | 2709.64272 | -1.583 | 2612.04217 | -1.569 | 2817.71213 | -1.534 | | 2709.64743 | -1.501 | 2612.04584 | -1.555 | 2817.72230 | -1.547 | | 2709.65152 | -1.515 | 2612.04988 | -1.538 | 2817.72759 | -1.531 | | 2709.65693 | -1.591 | 2012.05329 | -1.503 | 2817.73350 | -1.5/1 | | 2709.66124 | -1.569 | 2012.05721 | -1.503 | 2817.75439 | -1.508 | | 2709.66516 | -1.599 | 2012.00399 | -1.509 | 2817.7624 | -1.572 | | 2709.67632 | -1.554 | 2012.05743 | -1.533 | 2817.76450 | -1.503 | | 2709.63056 | -1.566 | 2012.07211 | -1.545 | 2817.76355 | -1.557 | | 2709.68408 | -1.574 | 2612.07578 | -1.530 | 2817.77090 | -1.508 | | 2709.68899 | -1.568 | 2812.68598 | -1.533 | 2817.78221 | -1.508 | | 2709.69477 | -1.594 | 2817.51033 | -1.597 | 2017.76000 | -1.579 | | 2709.69826 | -1.556 | 2817.52208 | -1.600 | 2017.77007 | -1.527 | | 2709.70956 | -1.547 | 2817.52552 | -1.610 | 2017.80021 | -1.510 | | 2709.71404
2709.71861
2709.72247
2709.72049
2709.73107 | -1.568
-1.609
-1.666
-1.579
-1.570 | 2017.52951
2817.53318
2017.53904
2017.54350
2017.54729 | -1.598
-1.592
-1.586
-1.585 | 2817.80437
2817.80911
2817.81931
2817.82347
2817.82372 | -1.610
-1.609
-1.650
-1.577
-1.605 | | 2709.74152 | -1.580 | 2017.05233 | -1.580 | 2824.51500 | -1.003 | | 2709.74550 | -1.617 | 2017.05097 | -1.587 | 2824.52150 | -1.015 | | 2709.74967 | -1.550 | 2017.05990 | -1.567 | 2824.52512 | -1.013 | | 2709.75346 | -1.601 | 2017.06374 | -1.583 | 2824.52995 | -1.025 | | 2709.75790 | -1.585 | 2017.50791 | -1.584 | 2824.50327 | -1.025 | | 2709.76368 | -1.025 | 2817.57172 | -1.570 | 2824.55081 | -1.530 | | 2709.76772 | -1.006 | 2017.57038 | -1.570 | 2824.54037 | -1.541 | | 2709.78796 | -1.597 | 2017.58219 | -1.569 | 2824.54074 | -1.605 | | 2709.79288 | -1.567 | 2817.58585 | -1.570 | 2824.58132 | -1.627 | | 2709.80063 | -1.549 | 2817.58960 | -1.577 | 2824.55431 | -1.629 | | 2812.52253
2812.52719
2812.53111
2812.53829
2812.54160 | -1.665
-1.599
-1.666
-1.596
-1.660 | 2817.59078
2817.60089
2817.00488
2817.00837
2817.01218 | -1.559
-1.559
-1.550
-1.550 | 2624.5532
2824.55279
2824.55591
2624.5692
2824.57231 | -1.630
-1.624
-1.633
-1.631
-1.629 | | 2812.54594 | -1.590 | 2817.61577 | -1.572 | 2824.57870 | -1.024 | | 2312.55005 | -1.595 | 2817.62659 | -1.573 | 2824.58236 | -1.010 | | 2812.55541 | -1.599 | 2817.62410 | -1.570 | 2824.58635 | -1.015 | | 2812.55247 | -1.579 | 2817.62782 | -1.570 | 2824.59004 | -1.014 | | 2812.56586 | -1.582 | 2817.63290 | -1.502 | 2824.59420 | -1.003 | ## TABLE 12(CUNT'D) | | | 1100112 | | | | |--|--|--|--------------------------------------|--|--| | HEL JD
(2440000+) | DMAG. | HEL JD
(2446660+) | DMAG. | HEL JU
(2440000+) | DMAG. | | 2824.60375 | -1.016 | 2840.89046 | -1.537 | 2856.85097 | -1.021 | | 2824.60739 | -1.025 | 2840.89350 | -1.552 | 2856.87207 | -1.012 | | 2824.61076 | +1.021 | 2850.60551 | -1.567 | 2856.87825 | -1.513 | | 2824.61415 | -1.028 | 2850.60591 | -1.591 | 2850.88174 | -1.590 | | 2824.62051 | -1.05 | 2850.01234 | -1.533 | 2350.88525 | -1.005 | | 2824.62407 | -1.626 | 2850.61663 | -1.556 | 2856.88472 | -1.618 | | 2824.62831 | -1.591 | 2850.02261 | -1.586 | 2856.87431 | -1.929 | | 2824.63210 | -1.641 | 2850.03520 | -1.502 | 2858.89735 | -1.997 | | 2824.63551 | -1.619 | 2856.64133 | -1.505 | 2858.93124 | -1.613 | | 2824.65204 | -1.620 | 2850.64874 | -1.505 | 2856.9550 | -1.014 | | 2824.65703 | -1.048 | 2856.65213 | -1.601 | 2856.91545 | -1.015 | | 2824.66092 | -1.029 | 2856.05587 | -1.602 | 2856.91677 | -1.021 | | 2824.65548 | -1.036 | 2850.65138 | -1.605 | 2856.92331 | -1.015 | | 2824.65905 | -1.016 | 2850.66569 | -1.586 | 2856.92345 | -1.013 | | 2824.67330 | -1.025 | 2850.5653 | -1.586 | 2873.57460 | -1.333 | | 2824.67757 | -1.593 | 2856.67472 | +1.584 | 2373.578.55 | -1.338 | | 2840.55584 | -1.611 | 2856.67838 | -1.573 | 2373.58190 | -1.333 | | 2840.55998 | -1.626 | 2850.68202 | -1.535 | 2373.58542 | -1.268 | | 2840.56354 | +1.634 | 2856.68574 | -1.093 | 2873.58546 | -1.210 | | 2840.56718 | -1.627 | 2850.69768 | -1.563 | 2873.59546 | -1.183 | | 2840.57407
2840.65985
2840.67484
2840.67395
2840.68271 | -1.554
-1.554
-1.010
-1.007
-1.592 | 2856.70159
2656.70523
2856.70902
2856.72520
2856.73041 | -1.599
-1.609
-1.653
-1.556 | 2873.59600
2073.60244
2873.60815
2873.6123+
2873.61065 | -1.162
-1.143
-1.098
-1.070
-1.052 | | 2840.75920 | -1.075 | 2850.73457 | -1.531 | 2873.02045 | -0.676 | | 2840.76409 | -1.010 | 2656.73891 | -1.505 | 2873.03261 | +0.797 | | 2840.76830 | -1.013 | 2656.74203 | -1.605 | 2373.03617 | -0.711 | | 2840.77231 | -1.505 | 2650.74054 | -1.625 | 2873.64019 | -0.635 | | 2840.77610 | -1.576 | 2650.75100 | -1.618 | 2873.64077 | -0.592 | | 2840.77982 | -1.503 | 2056.70504 | -1.004 | 2873.65055 | -0.027 | | 2840.76035 | -1.553 | 2650.70506 | -1.043 | 2873.65450 | -0.355 | | 2840.78942 | -1.572 | 2650.77195 | -1.021 | 2873.6597 | -0.258 | | 2840.79261 | -1.592 | 2650.77651 | -1.985 | 2573.75825 | -0.758 | | 2840.79017 | -1.542 | 2850.76952 | -1.603 | 2873.754443 | 0.758 | | 2840.82419 | -1.571 | 2850.79341 | -1.022 | 2873.79723 | 0.533 | | 2840.82856 | -1.528 | 2856.79912 | -1.629 | 2875.80333 | 0.460 | | 2840.83205 | -1.609 | 2856.80912 | -1.021 | 2873.80600 | 0.236 | | 2840.83654 | -1.549 | 2856.61235 | -1.560 | 2873.81029 | 0.165 | | 2840.83973 | -1.574 | 2850.81667 | -1.583 | 2873.81400 | 0.001 | | 2840.84294 | -1.500 | 2856.81934 | -1.015 | 2673.81934 | -0.172 | | 2840.84606 | -1.550 | 2856.82375 | -1.576 | 2673.62333 | -0.103 | | 2840.85083 | -1.529 | 2856.82901 | -1.590 | 2673.82627 | -0.152 | | 2840.86005 | -1.519 | 2856.83290 | -1.596 | 2873.83116 | -0.451 | | 2840.86316
| -1.555 | 2856.83679 | -1.613 | 2873.83341 | -0.611 | | 2840.86728 | -1.591 | 2 850 • 840 93 | -1.612 | 2873.84500 | -0.700 | | 2840.87156 | -1.547 | 2856 • 546 94 | -1.634 | 2873.84600 | -0.783 | | 2840.87470 | -1.554 | 2856 • 550 48 | -1.022 | 2887.77560 | -1.586 | | 2840.87780 | -1.540 | 2850 • 853 94 | -1.003 | 2887.77909 | -1.591 | | 2840.88712 | -1.557 | 2850 • 85746 | -1.605 | 2887.78560 | -1.619 | ## TABLE 12(CUNI'D) | HEL JD
(2440000+) | DMAG. | HEL JO
(2440000+) | JMAG. | HĒL JO
(2440900)+) | DMAG. | |----------------------|--------|----------------------|--------|-----------------------|--------| | 2887.78929 | -1.009 | 2895.81500 | -1.534 | 2903.76805 | -0.095 | | 2867.79266 | -1.013 | 2895.81882 | -1.557 | 2903.77159 | -0.753 | | 2887.79627 | -1.036 | 2895.62752 | -1.591 | 2903.77475 | -0.763 | | 2887.80068 | -1.660 | 2895.83081 | -1.572 | 2905.76109 | -0.381 | | 2887.80492 | -1.615 | 2695.83562 | -1.57 | 2903.79067 | -1.082 | | 2887.80833 | -1.002 | 2895.84293 | -1.503 | 2903.85492 | -1.442 | | 2887.82304 | -1.019 | 2895.84622 | -1.535 | 2918.05104 | 0.396 | | 2887.83489 | -1.009 | 2895.84964 | -1.535 | 2918.05532 | 0.703 | | 2887.84237 | -1.011 | 2895.855478 | -1.549 | 2915.05932 | 0.820 | | 2887.84905 | -1.018 | 2895.85584 | -1.557 | 2918.04+33 | 0.794 | | 2687.85291 | -1.054 | 2895.85143 | -1.540 | 2918.09038 | 0.025 | | 2667.85660 | -1.046 | 2895.85477 | -1.515 | 2918.70137 | -0.144 | | 2667.85999 | -1.020 | 2895.80840 | -1.524 | 2918.70071 | -0.241 | | 2687.86715 | -1.015 | 2895.87034 | -1.558 | 2915.71224 | -0.393 | | 2887.87350 | -1.575 | 2895.87970 | -1.543 | 2918.71585 | -0.495 | | 2887.87393 | -1.613 | 2903.56474 | -0.778 | 2918.71942 | -0.529 | | 2887.88283 | -1.605 | 2903.50816 | -0.718 | 2918.72319 | -0.515 | | 2887.89390 | -1.657 | 2903.57130 | -0.667 | 2918.73553 | -0.871 | | 2887.89786 | -1.674 | 2903.57439 | -0.011 | 2918.73714 | -0.879 | | 2895.74408 | -1.543 | 2903.58110 | -0.478 | 2918.74989 | -1.001 | | 2895.74904 | -1.557 | 2903.56451 | -0.433 | 2918.7553 | -1.095 | | 2d95.75241 | -1.568 | 2903.56763 | -0.337 | 2918.7554 | -1.116 | | 2895.75659 | -1.571 | 2903.59065 | -1.294 | 2918.76325 | -1.117 | | 2895.76656 | -1.564 | 2903.59374 | -0.225 | 2918.75413 | -1.172 | | 2895.70382 | -1.573 | 2903.59822 | -0.095 | 2918.77462 | -1.306 | | 2895.76749 | -1.573 | 2903.63154 | 0.078 | 2918.7735 | -1.324 | | 2895.77048 | -1.572 | 2903.03403 | 0.160 | 2918.78417 | -1.311 | | 2895.76015 | -1.599 | 2903.60892 | 0.253 | 2918.78735 | -1.424 | | 2695.78571 | -1.570 | 2903.72909 | 0.548 | 2918.79197 | -1.397 | | 2895.78690 | -1.578 | 2903.73327 | 0.248 | 2918.7955+ | -1.440 | | 2895.79222 | -1.540 | 2903.73597 | 0.160 | 2918.80542 | -1.476 | | 2895.79030 | -1.554 | 2903.74165 | -0.329 | 2918.80572 | -1.403 | | 2095.79902 | -1.565 | 2903.74462 | -0.373 | 2918.81192 | -1.504 | | 2895.80301 | -1.559 | 2903.74778 | -0.139 | 2918.81513 | -1.510 | | 2895.80638 | -1.579 | 2903.73761 | -3.428 | 2918.82225 | -1.528 | | 2895.80957 | -1.572 | 2903.75992 | -0.506 | 2918.82035 | -1.532 | ## TABLE 12 (CONT D) | HEL JD
(2440000+) | UMAG. | HEL JO
(2440000+) | DMAG. | HEL JO
(2440000+) | рмА3• | |----------------------|--------|----------------------|---------|----------------------|--------| | 2352.53417 | -2.012 | 2362-59015 | - 0.882 | 2302.72931 | -0.255 | | 2352.53798 | -2.026 | 2302-59426 | -0.705 | 2302.73330 | -0.263 | | 2352.54285 | -1.961 | 2302-59536 | -0.73 | 2302.73113 | -0.304 | | 2352.54980 | -1.915 | 2302-59300 | -0.816 | 2302.73404 | -0.425 | | 2352.55484 | -1.869 | 2302-59952 | -0.989 | 2302.73502 | -0.459 | | 2352 • 55 935 | -1.028 | 2302.00057 | -0.559 | 2302.73991 | -0.598 | | 2352 • 55369 | -1.747 | 2302.00303 | -0.443 | 2302.7442+ | -0.717 | | 2352 • 56453 | -1.703 | 2302.00451 | -0.417 | 2302.7430+ | -0.739 | | 2352 • 57443 | -1.035 | 2302.00505 | -0.358 | 2302.74303 | -0.355 | | 2352 • 59655 | -1.293 | 2302.00850 | -J.205 | 2302.74995 | -0.551 | | 2352.60151 | -1.191 | 2362.00919 | -0.244 | 2302.73003 | -0.078 | | 2352.61180 | -0.941 | 2362.01407 | -0.220 | 2302.73401 | -0.954 | | 2352.61911 | -0.755 | 2362.01461 | -0.110 | 2302.75565 | -0.977 | | 2352.62444 | -0.575 | 2362.01463 | -0.380 | 2302.75945 | -1.055 | | 2352.63015 | -0.345 | 2362.61538 | +0.041 | 2302.75352 | -1.377 | | 2352.63549 | -0.132 | 2362.01914 | 0.120 | 2302.76904 | -1.182 | | 2352.64242 | 0.155 | 2362.02611 | 0.228 | 2302.76912 | -1.250 | | 2352.64823 | 0.385 | 2362.02576 | 0.361 | 2302.77269 | -1.320 | | 2352.65498 | 0.714 | 2362.02557 | 0.421 | 2302.77349 | -1.330 | | 2352.60436 | 0.908 | 2362.02759 | 0.475 | 2302.78201 | -1.454 | | 2352.67201 | 0.918 | 2362.03118 | 0.036 | 2362.78942 | -1.571 | | 2362.50837 | -1.958 | 2302.03210 | 6.677 | 2362.79600 | -1.650 | | 2362.51319 | -1.951 | 2302.03275 | 6.703 | 2362.80216 | -1.715 | | 2362.51822 | -1.914 | 2302.03029 | 6.827 | 2562.81070 | -1.811 | | 2362.52401 | -1.058 | 2302.03744 | 6.845 | 2362.61664 | -1.548 | | 2362.52707 | -1.827 | 2362.63871 | 0.854 | 2362 • 82534 | -1.917 | | 2362.53036 | -1.800 | 2562.04060 | 0.859 | 2362 • 82632 | -1.917 | | 2362.53517 | -1.757 | 2362.04809 | 0.916 | 2367 • 50342 | -1.973 | | 2362.53911 | -1.715 | 2362.64878 | 0.944 | 2367 • 50743 | -1.925 | | 2362.54253 | -1.888 | 2362.64960 | 0.977 | 2367 • 50340 | -1.921 | | 2362.54594 | -1.655 | 2362.0651 | 0.957 | 2307.51329 | -1.872 | | 2362.54936 | -1.618 | 2362.00741 | 0.956 | 2367.51451 | -1.856 | | 2362.54963 | -1.615 | 2362.67952 | 0.982 | 2367.51775 | -1.811 | | 2362.55681 | -1.487 | 2362.68637 | 0.981 | 2367.51867 | -1.795 | | 2362.56001 | -1.440 | 2362.68635 | 6.963 | 2367.52214 | -1.755 | | 2362.56325 | -1.395 | 2302.68773 | 0.945 | 2367.52336 | -1.738 | | 2362.56439 | -1.379 | 2302.69200 | 0.869 | 2367.52603 | -1.708 | | 2362.56753 | -1.330 | 2302.69310 | 3.841 | 2367.54703 | -1.691 | | 2362.56828 | -1.322 | 2302.69070 | 0.788 | 2367.53029 | -1.635 | | 2362.57065 | -1.279 | 2302.69902 | 0.722 | 2367.53134 | -1.643 | | 2362.57130 | -1.269 | 2302.70309 | 0.704 | 2367.53475 | -1.586 | | 2362.57394 | -1.234 | 2302.70702 | 0.502 | 2367.53663 | -1.356 | | 2362.57499 | -1.225 | 2302.70872 | 0.478 | 2367.53874 | -1.525 | | 2362.57928 | -1.139 | 2302.71258 | 0.500 | 2367.53949 | -1.519 | | 2362.58025 | -1.119 | 2302.71280 | 0.303 | 2367.54263 | -1.478 | | 2362.58420 | -1.024 | 2362.71839 | 0.130 | 2307.54375 | -1.454 | | 2362.58471 | -1.012 | 2362.71931 | 0.698 | 2307.54032 | -1.467 | | 2362.58541 | -6.997 | 2362.71994 | 0.072 | 2307.54714 | -1.398 | | 2362.58843 | -6.928 | 2362.72487 | -0.116 | 2307.54965 | -1.371 | | 2362.58922 | -0.903 | 2362.72555 | -0.141 | 2307.55091 | -1.350 | # TABLE 12(CUNT D) | HEL JD
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | HEL JU
(2440000+) | EMAG. | |--|---|--|--|--|--| | 2367.55385 | -1.294 | 2367.67840 | 0.937 | 2491.55832 | -2.219 | | 2367.55460 | -1.206 | 2367.67933 | 0.933 | 2491.57034 | -2.237 | | 2367.55791 | -1.235 | 2367.68314 | 0.905 | 2491.57121 | -2.227 | | 2367.55871 | -1.217 | 2367.68429 | 0.900 | 2491.55093 | -2.251 | | 2367.56278 | -1.182 | 2367.68956 | 0.813 | 2491.55203 | -2.251 | | 2367.56347
2367.56756
2367.56821
2367.57110
2367.57198 | -1.174
-1.684
-1.674
-1.63
-0.985 | 2367.69020
2367.69361
2367.69443
2367.69837
2367.69905 | 0.806
0.754
0.737
0.643
0.623 | 2491.55345
2491.59200
2491.59717
2491.59910
2491.60300 | -2.243
-2.243
-2.243
-2.233 | | 2367.57544 | -0.911 | 2367.76254 | 0.543 | 2491.63304 | -2.249 | | 2367.57559 | -0.861 | 2367.76339 | 0.520 | 2491.61133 | -2.249 | | 2367.57938 | -0.776 | 2367.76688 | 0.432 | 2491.61397 | -2.250 | | 2367.58018 | -0.757 | 2367.76766 | 0.394 | 2491.61397 | -2.244 | | 2367.58307 | -0.075 | 2367.71634 | 0.279 | 2491.61333 | -2.250 | | 2367.58359 | -0.052 | 2367.71361 | 0.185 | 2491.62302 | -2.244 | | 2367.58429 | -0.031 | 2367.71363 | 0.163 | 2491.62524 | -2.279 | | 2367.58713 | -0.536 | 2367.71512 | 0.644 | 2491.63937 | -2.172 | | 2367.58776 | -0.568 | 2367.71695 | 0.668 | 2491.64202 | -2.140 | | 2367.58628 | -0.473 | 2367.71747 | -6.011 | 2491.64371 | -2.721 | | 2367.58830 | -0.445 | 2307.71971 | -0.287 | 2491.65355 | -2.130 | | 2367.59177 | -0.376 | 2367.72341 | -0.198 | 2491.55355 | -2.18 | | 2367.59262 | -0.349 | 2367.72302 | -0.319 | 2491.65745 | -2.248 | | 2367.59367 | -0.312 | 2307.72532 | -0.341 | 2491.65465 | -2.351 | | 2367.5988 | -0.031 | 2307.72925 | -0.436 | 2491.65352 | -2.200 | | 2507.59992 | 0.010 | 2307.72990 | -0.450 | 2491.00939 | -2.203 | | 2367.60132 | 0.057 | 2367.73280 | -0.555 | 2491.0727 | -1.282 | | 2307.60793 | 0.430 | 2367.73360 | -0.556 | 2491.67727 | -2.207 | | 2307.60895 | 0.474 | 2367.73604 | -0.654 | 2491.6783+ | -2.209 | | 2307.61757 | 0.729 | 2367.73674 | -0.553 | 2491.03572 | -2.231 | | 2367.61924 | 0.790 | 2367.73946 | -3.763 | 2491.65664 | -2.245 | | 2367.62336 | 0.828 | 2367.74203 | -0.764 | 2493.54525 | -2.195 | | 2367.62458 | 0.840 | 2367.74280 | -3.864 | 2493.56729 | -2.256 | | 2367.62922 | 0.920 | 2367.74343 | -0.882 | 2493.59781 | -2.217 | | 2367.63066 | 0.922 | 2367.74652 | -0.955 | 2493.59840 | -2.213 | | 2367.63637 | 0.937 | 2367.74714 | -0.969 | 2493.600007 | -2.238 | | 2367.63789 | 0.932 | 2367.75322 | -1.119 | 2493.60495 | -2.223 | | 2367.64176 | 0.970 | 2367.75375 | -1.124 | 2493.60561 | -2.423 | | 2367.64268 | 0.977 | 2367.75669 | -1.170 | 2493.61371 | -2.405 | | 2367.64749 | 0.953 | 2367.75773 | -1.197 | 2493.61458 | -2.40 | | 2367.64854 | 0.951 | 2367.76323 | -1.258 | 2493.61832 | -2.242 | | 2367.65235 | 0.977 | 2367.76688 | -1.272 | 2493.05450 | -2.145 | | 2367.65300 | 0.970 | 2367.76452 | -1.354 |
2493.04390 | -2.196 | | 2307.65392 | 0.978 | 2367.75486 | -1.365 | 2493.60173 | -2.292 | | 2367.66033 | 0.944 | 2367.76574 | -1.378 | 2493.60230 | -2.304 | | 2367.66115
2367.66541
2367.66729
2367.67389
2367.67464 | 0.949
1.000
0.995
0.948 | 2367.76885
2367.76973
2367.79017
2367.79526
2367.86221 | -1.427
-1.442
-1.731
-1.709
-1.850 | 2493.67055
2497.56595
2497.59365
2497.59407
2497.5975+ | -2.242
-2.325
-2.293
-2.295
-2.298 | ## TABLE 12 (CONT'D) | HEL JD
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | |--|--|--|--|--|--| | 2497.59876 | -2.297 | 2497.74959 | -2.290 | 2507.00807 | -2.218 | | 2497.60253 | -2.265 | 2497.75029 | -2.290 | 2507.60941 | -2.219 | | 2497.60355 | -2.265 | 2497.75099 | -2.289 | 2507.61203 | -2.214 | | 2497.60534 | -2.291 | 2497.75777 | -2.271 | 2507.01270 | -2.231 | | 2497.60901 | -2.277 | 2497.75767 | -2.271 | 2507.01829 | -2.222 | | 2497.61038
2497.61404
2497.61549
2497.62584 | -2.261
-2.291
-2.265
-2.302
-2.290 | 2497.76854
2497.77305
2497.77390
2497.77689
2497.77998 | -2.200
-2.282
-2.208
-2.279
-2.270 | 2507.01910
2507.01975
2507.62435
2507.62512
2507.62571 | -2.222
-2.223
-2.231
-2.232
-2.233 | | 2497.63140 | -2.299 | 2497.78557 | -2.278 | 2507.69292 | -2.247 | | 2497.63279 | -2.289 | 2497.78484 | -2.278 | 2507.63316 | -2.239 | | 2497.63671 | -2.290 | 2497.78661 | -2.244 | 2507.63769 | -2.269 | | 2497.63800 | -2.260 | 2497.78971 | -2.243 | 2507.69016 | -2.269 | | 2497.64169 | -2.262 | 2497.79387 | -2.254 | 2507.6908 | -2.212 | | 2497.64291 | -2.281 | 2497-79514 | -2.255 | 2507.64397 | -2.239 | | 2497.64720 | -2.292 | 2497-79950 | -2.207 | 2507.6445. | -2.233 | | 2497.64992 | -2.363 | 2497-80005 | -2.208 | 2507.64781 | -2.219 | | 2497.65189 | -2.301 | 2497-80094 | -2.271 | 2507.6435. | -2.219 | | 2497.65570 | -2.289 | 2497-80504 | -2.271 | 2507.65.31 | -2.232 | | 2497.65702 | -1.285 | 2497.60588 | -2.259 | 2507.00302 | -2.234 | | 2497.66074 | -2.303 | 2497.80997 | -2.263 | 2537.001.7 | -2.231 | | 2497.66144 | -2.905 | 2497.61471 | -2.263 | 2007.60039 | -2.214 | | 2497.66214 | -2.313 | 2497.61593 | -2.261 | 2007.60109 | -2.217 | | 2497.66842 | -2.232 | 2497.52364 | -2.264 | 2007.69311 | -2.231 | | 2497.66974 | -2.190 | 2497.62476 | -2.204 | 2507.09542 | -2.231 | | 2497.67373 | -2.251 | 2497.82900 | -2.270 | 2507.65712 | -2.246 | | 2497.67512 | -2.264 | 2497.83548 | -2.281 | 2507.76125 | -2.221 | | 2497.67981 | -2.284 | 2497.84200 | -2.275 | 2507.7527. | -2.212 | | 2497.68108 | -2.277 | 2497.84371 | -2.267 | 2507.7754 | -2.231 | | 2497.68542 | -2.298 | 2497.84709 | -2.272 | 2507.76002 | -2.217 | | 2497.68059 | -2.296 | 2497.84874 | -2.274 | 2507.76677 | -2.210 | | 2497.69160 | -2.306 | 2497.85255 | -2.290 | 2509.55361 | -2.105 | | 2497.69282 | -2.305 | 2497.85378 | -2.282 | 2509.55361 | -2.170 | | 2497.69654 | -2.318 | 2497.85829 | -2.278 | 2509.5537 | -2.151 | | 2497.69769 | -2.313 | 2497.85969 | -2.271 | 2509.55219 | -2.122 | | 2497.70180 | -2.293 | 2497.87564 | -2.293 | 2509.55335 | -2.113 | | 2497.70307 | -2.201 | 2497.87585 | -2.291 | 2509.55535 | -2.125 | | 2497.70393 | -2.201 | 2497.87774 | -2.288 | 2509.55535 | -2.128 | | 2497.71524 | -2.277 | 2497.88277 | -2.272 | 2509.55594 | -2.131 | | 2497.71051 | -2.302 | 2497.883.99 | -2.278 | 2509.50904 | -2.123 | | 2497.72154 | -2.346 | 2497.69977 | -2.245 | 2509.57191 | -2.134 | | 2497.72292 | -2.352 | 2497.90382 | -2.249 | 2509.57201 | -2.129 | | 2497.73923 | -2.291 | 2497.90748 | -2.271 | 2509.57337 | -2.134 | | 2497.73989 | -2.289 | 2497.90843 | -2.272 | 2509.57007 | -2.132 | | 2497.74057 | -2.286 | 2497.91010 | -2.277 | 2509.57832 | -2.128 | | 2497.74127 | -2.204 | 2497.91715 | -2.279 | 2509.57901 | -2.126 | | 2497.74196 | -2.281 | 2507.57935 | -2.246 | 2509.55128 | -2.099 | | 2497.74266 | -2.279 | 2507.58588 | -2.230 | 2509.50198 | -2.095 | | 2497.74336 | -2.277 | 2507.60577 | -2.215 | 2509.58422 | -2.081 | ## TABLE 12(CUNT'D) | HEL JD
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | HEL JU
(2440000+) | DAAG. | |----------------------|--------|----------------------|--------|----------------------|------------------------------------| | 2509.58492 | -2.074 | 2509.67240 | -1.657 | 2518.79049 | -2.159 -2.174 -2.198 -2.205 -2.213 | | 2509.58839 | -2.002 | 2509.67450 | -0.997 | 2518.79493 | | | 2509.53909 | -2.005 | 2509.67520 | -0.980 | 2518.75909 | | | 2509.59135 | -2.057 | 2509.57779 | -3.834 | 2518.75902 | | | 2509.59223 | -2.049 | 2509.67849 | -0.858 | 2518.80100 | | | 2509.59465 | -2.020 | 2509.08143 | -0.796 | 2518.85007 | -2.231 | | 2509.59534 | -2.020 | 2509.08213 | -0.773 | 2518.3154) | -2.249 | | 2509.59779 | -2.017 | 2509.09255 | -0.393 | 2518.51731 | -2.234 | | 2509.59840 | -2.008 | 2509.59325 | -0.353 | 2518.52277 | -2.205 | | 2509.60055 | -2.008 | 2509.09004 | -0.079 | 2518.82504 | -2.196 | | 2509.60125 | -1.995 | 2509.70140 | -0.053 | 2510.8350, | -2.217 | | 2509.60419 | -1.957 | 2509.70210 | -0.008 | 2518.85536 | -2.205 | | 2509.60489 | -1.955 | 2509.70279 | 0.006 | 2518.8010+ | -2.243 | | 2509.60734 | -1.952 | 2509.70559 | 0.127 | 2516.809+9 | -2.258 | | 2509.60801 | -1.942 | 2509.7131J | 0.018 | 2518.87523 | -2.192 | | 2509.61003 | -1.915 | 2509.71045 | 0.335 | 2518.88305 | -2.277 | | 2509.61132 | -1.910 | 2509.71553 | 0.552 | 2516.55337 | -2.276 | | 2509.61444 | -1.095 | 2509.71912 | 0.709 | 2524.58463 | -1.077 | | 2509.61514 | -1.892 | 2509.72224 | 0.866 | 2524.59335 | -1.023 | | 2509.61723 | -1.072 | 2509.72588 | 1.078 | 2524.663393 | -1.447 | | 2509.61791 | -1.803 | 2509.72058 | 1.120 | 2524.60779 | -1.208 | | 2509.62127 | -1.005 | 2509.73174 | 1.008 | 2524.01355 | -1.231 | | 2509.62192 | -1.792 | 2509.73528 | 1.001 | 2524.61361 | -1.138 | | 2509.62451 | -1.777 | 2509.73909 | 1.059 | 2524.62378 | -1.318 | | 2509.62521 | -1.708 | 2509.74273 | 1.075 | 2524.6257 | -0.19 | | 2509.62763 | -1.750 | 2509.74760 | 1.072 | 2524 • 631 33 | -0.173 | | 2509.62833 | -1.754 | 2509.75315 | 1.058 | 2524 • 63614 | -0.173 | | 2509.63199 | -1.687 | 2509.75924 | 1.127 | 2524 • 64 0 94 | -0.630 | | 2509.63286 | -1.675 | 2509.77260 | 1.127 | 2524 • 64 7 93 | -0.444 | | 2509.63887 | -1.553 | 2518.58568 | -2.159 | 2524 • 65239 | -0.174 | | 2509.63927 | -1.550 | 2518.c1009 | -2.130 | 2524.05820 | C.152 | | 2509.64171 | -1.555 | 2518.c1550 | -2.175 | 2524.05182 | 0.235 | | 2509.64239 | -1.555 | 2518.c2208 | -2.182 | 2524.05850 | 0.592 | | 2509.64553 | -1.504 | 2518.c2592 | -2.183 | 2524.07331 | 5.781 | | 2509.64623 | -1.485 | 2518.c309c | -2.179 | 2524.07317 | 0.895 | | 2509.64847 | -1.470 | 2518.03926 | -2.163 | 2524.65244 | 0.967 | | 2509.64917 | -1.457 | 2518.54574 | -2.159 | 2524.71085 | 1.053 | | 2509.65161 | -1.418 | 2518.05065 | -2.203 | 2524.71941 | 1.021 | | 2509.65229 | -1.466 | 2518.05499 | -2.197 | 2524.7243_ | 1.004 | | 2509.65455 | -1.589 | 2518.06010 | -2.179 | 2524.73155 | 1.027 | | 2509.65525 | -1.375 | 2518.00551 | -2.152 | 2524 • 75589 | 1.011 | | 2509.65750 | -1.329 | 2518.07528 | -2.203 | 2524 • 73 995 | 0.995 | | 2509.65319 | -1.323 | 2516.71360 | -2.177 | 2524 • 74414 | 0.991 | | 2509.65319 | -1.202 | 2518.72083 | -2.168 | 2524 • 74805 | 1.013 | | 2509.65201 | -1.246 | 2518.74863 | -2.174 | 2524 • 75389 | 1.050 | | 2509.00515 | -1.163 | 2518.75585 | -2.105 | 2525.50089 | -2.154 | | 2509.00585 | -1.176 | 2518.76087 | -2.219 | 2525.50790 | -2.170 | | 2509.60792 | -1.117 | 2518.76506 | -2.199 | 2525.57154 | -2.267 | | 2509.66861 | -1.112 | 2518.77122 | -2.200 | 2525.53119 | -2.266 | | 2509.07171 | -1.053 | 2518.77595 | -2.222 | 2525.53030 | -2.219 | ## TABLE 12 (CUNT'D) | HEL JD
(2440000+) | ŪMAĠ• | HEL JU
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | |---|--|--|--|--|--| | 2525.59263
2525.59572
2525.60011
2525.60305
2525.603699 | -2.171
-2.113
-2.111
-2.154
-2.172 | 2042.70643
2642.71042
2642.71450
2042.71812
2642.72450 | -2.231
-2.232
-2.229
-2.226
-2.216 | 2046.82915
2046.83319
2046.83319
2046.83312
2040.84456
2046.83211 | C. 600
0.765
0.871
C. 856
C. 914 | | 2525.61275
2525.63162
2525.63015
2525.63988
2525.64334 | -2.127
-2.179
-2.173
-2.109
-2.155 | 2042.72670
2042.73219
2042.74373
2042.74901
2042.75313 | -2.223
-2.208
-2.190
-2.150
-2.140 | 2046.85627
2646.80165
2046.89497
2646.80955
2646.87457 | 0.690
0.922
0.905
0.905 | | 2525.64708 | -2.218 | 2642.75951 | -2.129 | 2646.87555 | 0.910 | | 2525.65167 | -2.179 | 2642.76302 | -2.135 | 2040.87754 | 0.897 | | 2525.65675 | -2.173 | 2642.76652 | -2.141 | 2050.62239 | -2.240 | | 2525.66216 | -2.140 | 2642.77500 | -2.140 | 2650.68532 | -2.245 | | 2525.66538 | -2.170 | 2642.77716 | -2.136 | 2650.69169 | -2.250 | | 2525.666879 | -2.151 | 2642.76070 | -2.119 | 2050.69510 | -2.234 | | 2525.67435 | -2.107 | 2642.78407 | -2.112 | 2050.73145 | -2.237 | | 2525.67765 | -2.184 | 2642.78753 | -2.122 | 2050.71535 | -2.247 | | 2525.68779 | -2.193 | 2642.79082 | -2.124 | 2050.71115 | -2.249 | | 2525.69141 | -2.232 | 2642.79815 | -2.255 | 2650.71553 | -2.23 | | 2525.69532 | -2.25 | 2542.50294 | -2.242 | 2650.71950 | -2.207 | | 2525.70735 | -2.160 | 2642.50952 | -2.270 | 2000.70.+35 | -2.207 |
| 2525.71176 | -2.100 | 2642.51954 | -2.249 | 2650.73070 | -2.240 | | 2525.71601 | -2.141 | 2642.5255 | -2.200 | 2060.73400 | -2.279 | | 2525.72319 | -2.174 | 2642.53265 | -2.202 | 2060.73771 | -2.200 | | 2525.72634 | -2.157 | 2042.04973 | -2.253 | 2000.74123 | -2.245 | | 2525.72980 | -2.207 | 2042.00024 | -2.251 | 2050.74031 | -2.251 | | 2525.73474 | -2.100 | 2042.07177 | -2.201 | 2050.75020 | -2.261 | | 2525.74299 | -2.172 | 2046.09940 | -2.079 | 2600.7544+ | -2.248 | | 2525.79587 | -2.289 | 2046.70009 | -2.057 | 2650.75820 | -2.244 | | 2525.80158 | -2.194 | 2646.71025 | -2.045 | 2650.70454 | -2.252 | | 2525.81030 | -2.197 | 2646.71457 | -2.004 | 2050.70867 | -2.254 | | 2525.61741 | -2.207 | 2646.72670 | -1.972 | 2650.81075 | -2.226 | | 2525.82115 | -2.217 | 2646.75603 | -1.597 | 2650.81594 | -2.212 | | 2525.82500 | -2.220 | 2646.75171 | -1.505 | 2650.81961 | -2.256 | | 2525.83237 | -2.229 | 2040.76030 | -1.456 | 2650.82257 | -2.237 | | 2525.83010 | -2.25 | 2040.77140 | -1.569 | 2650.82592 | -2.248 | | 2525.84049 | -2.194 | 2040.77744 | -1.234 | 2650.82578 | -2.250 | | 2042.63104 | -2.242 | 2040.78123 | -1.198 | 2650.83230 | -2.239 | | 2642.63964 | -2.227 | 2040.76510 | -1.115 | 2650.83641 | -2.248 | | 2642.64518
2642.65689
2642.65630
2642.66046
2642.66766 | -2.205
-2.201
-2.207
-2.240
-2.207 | 2640.78589
2640.79011
2646.79349
2640.80315
2646.80377 | -1.101
-0.999
-0.613
-0.708
-0.572 | 2050.83903
2650.84249
2650.84955
2074.71074
2074.72230 | -2.218
-2.432
-2.429
-2.165 | | 2042.67185 | -2.214 | 2640.80753 | -0.407 | 2074.72614 | -2.191 | | 2642.67804 | -2.223 | 2640.81175 | -0.217 | 2074.73175 | -2.162 | | 2642.68387 | -2.251 | 2640.81036 | -0.005 | 2674.73584 | -2.153 | | 2642.69006 | -2.228 | 2640.82042 | 0.214 | 2674.73975 | -2.151 | | 2642.70155 | -2.235 | 2640.62429 | 0.405 | 2074.74625 | -2.147 | ## TABLE 12 (CUNT'D) | HEL JD
(2440000+) | UMAG. | HEL JD
(2440000+) | DMAG. | HLL JD
(24400000+) | DMAG. | |--|--|--|--|--|--------------------------------------| | 2674.75321 | -2.160 | 2098.03163 | -2.026 | 2737.04639 | -2.198 | | 2674.76119 | -2.146 | 2098.03081 | -2.040 | 2707.65202 | -2.172 | | 2674.76570 | -2.145 | 2090.04307 | -2.041 | 2707.65051 | -2.160 | | 2674.77161 | -2.173 | 2090.04758 | -2.053 | 2707.00107 | -2.206 | | 2674.77784 | -2.141 | 2090.05174 | -2.09 | 2707.00054 | -2.177 | | 2674.78493 | -2.112 | 2098,65391 | -2.000 | 2707.67312 | -2.235 | | 2674.79033 | -2.111 | 2596,66563 | -2.000 | 2707.67333 | -2.217 | | 2674.79520 | -2.122 | 2596,65979 | -2.000 | 2707.00319 | -2.220 | | 2674.80233 | -2.122 | 2698,67533 | -2.000 | 2707.00333 | -2.227 | | 2674.80781 | -2.121 | 2698,69623 | -2.009 | 2707.00330 | -2.223 | | 2674.81185 | -2.102 | 2098.09584 | -2.070 | 2707.69777 | -2.231 | | 2674.81604 | -2.115 | 2098.70277 | -2.112 | 2707.70194 | -2.240 | | 2674.82390 | -2.104 | 2098.70094 | -2.066 | 2707.71029 | -2.272 | | 2674.82576 | -2.117 | 2098.71253 | -2.098 | 2707.71-49 | -2.235 | | 2674.82992 | -2.111 | 2098.71666 | -2.079 | 2707.71551 | -2.220 | | 2681.0343¢ | -1.203 | 2090.72292 | -2.100 | 2707.72452 | -2.225 | | 2001.69178 | -1.101 | 2090.73022 | -2.007 | 2707.73256 | -2.226 | | 2081.69919 | -1.083 | 2090.73005 | -2.107 | 2707.73667 | -2.212 | | 2081.69918 | -1.002 | 2090.73925 | -2.134 | 2707.74163 | -2.215 | | 2081.70225 | -0.902 | 2090.74723 | -2.122 | 2707.74663 | -2.239 | | 2681.70537
2681.70960
2681.71357
2681.71392
2681.72035 | -0.882
-0.709
-0.604
-0.653
-0.529 | 2090.75209
2098.76161
2098.70737
2090.77467
2090.77954 | -2.107
-2.125
-2.121
-2.127
-2.128 | 2707.70190
2707.70111
2707.70167
2707.70000
2707.77279 | -2.220
-2.219
-2.215
-2.215 | | 2691.82516 | 0.038 | 2098.78402 | -2.144 | 2707.77800 | -2.190 | | 2681.83072 | 0.038 | 2098.78950 | -2.127 | 2707.73201 | -2.2.4 | | 2681.83466 | 0.390 | 2098.79410 | -2.135 | 2707.78727 | -2.211 | | 2698.51604 | -1.952 | 2090.79301 | -2.132 | 2707.79104 | -2.256 | | 2698.52450 | -1.941 | 2098.80414 | -2.110 | 2707.79040 | -2.187 | | 2698.53332 | -1.937 | 2093.60793 | -2.110 | 2707.80749 | -2.106 | | 2698.53313 | -1.973 | 2701.53914 | -2.135 | 2707.81235 | -2.204 | | 2698.53818 | -1.987 | 2701.54575 | -2.174 | 2707.81801 | -2.195 | | 2098.54304 | -1.980 | 2701.55148 | -2.170 | 2707.82834 | -2.171 | | 2698.54790 | -1.989 | 2701.55420 | -2.142 | 2707.83320 | -2.107 | | 2698.55207 | -1.906 | 2701.55986 | -2.100 | 2707.83d0t | -2.13° | | 2698.56007 | -1.998 | 2701.56402 | -2.089 | 2707.84432 | -2.191 | | 2698.56458 | -2.313 | 2701.56353 | -2.050 | 2707.80192 | -2.203 | | 2698.57396 | -2.345 | 2701.56474 | -1.935 | 2707.80815 | -2.206 | | 2698.57812 | -2.646 | 2701.58925 | -1.900 | 2707.8544+ | -2.105 | | 2698.58228 | -2.040 | 2701.59337 | -1.045 | 2707.86930 | -2.141 | | 2698.58610 | -2.034 | 2701.59763 | -1.784 | 2707.87445 | -2.181 | | 2698.59029 | -2.027 | 2701.60356 | -1.723 | 2707.87900 | -2.209 | | 2698.59017 | -1.964 | 2701.61322 | -1.006 | 2707.83455 | -2.217 | | 2698.60086 | -2.024 | 2701.61530 | -1.538 | 2707.83455 | -2.197 | | 2698.60554 | -2.045 | 2701.01860 | -1 .484 | 2707.90123 | -2.211 | | 2698.61075 | -2.070 | 2707.01018 | -2 .246 | 2707.91026 | -2.172 | | 2698.61631 | -2.050 | 2707.03251 | -2 .226 | 2707.91446 | -2.175 | | 2698.6263 | -2.039 | 2707.03504 | -2 .243 | 2709.61375 | -2.222 | | 2698.62604 | -2.045 | 2707.04223 | -2 .244 | 2709.61373 | -2.205 | #### TABLE 12 (CUNT D) | HEL JU
(2440000+) | DMAG. | HEL JU
(2440000+) | DMAG. | HEL JD
(24400J0+) | OMAG. | |--|--|---|--------------------------------------|--|--| | 2709.62280 | -2.197 | 2812.62397 | -2.235 | 2817.67702 | -2.201 | | 2709.62706 | -2.213 | 2812.62796 | -2.226 | 2817.60349 | -2.210 | | 2709.63344 | -2.205 | 2812.63168 | -2.230 | 2817.68723 | -2.220 | | 2709.63706 | -2.205 | 2612.63554 | -2.234 | 2817.69280 | -2.207 | | 2709.64272 | -2.225 | 2812.64217 | -2.227 | 2817.73175 | -2.175 | | 2709.64743 | -2.212 | 2812.64584 | -2.220 | 2817.70213 | -2.174 | | 2709.65152 | -2.21 | 2812.64938 | -2.217 | 2817.71216 | -2.215 | | 2709.65153 | -2.218 | 2812.65529 | -2.225 | 2817.72235 | -2.195 | | 2709.66124 | -2.198 | 2812.65721 | -2.229 | 2817.72739 | -2.253 | | 2709.66516 | -2.204 | 2812.6639 | -2.225 | 2817.73356 | -2.217 | | 2709.67632 | -2.195 | 2012.00743 | -2.217 | 2817.75459 | -2.100 | | 2709.68056 | -2.175 | 2012.07211 | -2.221 | 2817.70020 | -2.214 | | 2709.68408 | -2.172 | 2012.07578 | -2.221 | 2817.70450 | -2.217 | | 2709.68899 | -2.203 | 2012.00598 | -2.225 | 2817.70495 | -2.214 | | 2709.69477 | -2.199 | 2017.01033 | -2.247 | 2817.77043 | -2.195 | | 2709.69826
2709.70950
2709.71464
2709.71561
2709.72247 | -2.177
-2.173
-2.179
-2.186
-2.172 | 2617.52203
2617.52552
2617.52951
2617.523313
2617.55984 | -2.236
-2.241
-2.243
-2.253 | 2617.78221
2817.78033
2617.79537
2817.85521
2817.85521 | -2.165
-2.203
-2.103
-2.221
-2.200 | | 2709.72049 | -2.177 | 2617.54360 | -2.239 | 2817.8.911 | -2.170 | | 2709.73167 | -2.155 | 2817.54729 | -2.247 | 2817.8.951 | -2.150 | | 2709.74152 | -2.194 | 2317.55253 | -2.202 | 2817.8337 | -2.264 | | 2709.74550 | -2.199 | 2617.55597 | -2.257 | 2824.51555 | -2.258 | | 2709.74967 | -2.168 | 2817.55993 | -2.271 | 2824.52155 | -2.257 | | 2709.75346 | -2.195 | 2817.50374 | -2.201 | 2824.52993 | -2.200 | | 2709.75790 | -2.195 | 2817.50791 | -2.250 | 2824.52993 | -2.200 | | 2709.76368 | -2.165 | 2817.57172 | -2.245 | 2824.51327 | -2.200 | | 2709.76772 | -2.185 | 2817.57838 | -2.240 | 2824.53961 | -2.200 | | 2709.78796 | -2.154 | 2817.58219 | -2.253 | 2824.54337 | -2.201 | | 2709.79288 | -2.165 | 2817.58583 | -2.247 | 2824.54674 | -2.254 | | 2709.80063 | -2.176 | 2817.58960 | -2.239 | 2824.55102 | -2.257 | | 2812.52253 | -2.207 | 2817.59578 | -2.244 | 2824.55431 | -2.250 | | 2812.52719 | -2.203 | 2817.60089 | -2.240 | 2824.55820 | -2.254 | | 2812.53111 | -2.202 | 2817.600488 | -2.251 | 2824.55279 | -2.227 | | 2812.53829 | -2.264 | 2817.00857 | -2.243 | 2 524 . 555 91 | -2.242 | | 2812.54160 | -2.201 | 2817.61218 | -2.243 | 2 524 . 56 922 | -2.244 | | 2812.54594 | -2.203 | 2817.61577 | -2.240 | 2 524 . 57 2 31 | -2.245 | | 2812.55005 | -2.209 | 2817.62039 | -2.232 | 2 524 . 57 8 76 | -2.241 | | 2812.55541 | -2.255 | 2817.62410 | -2.242 | 2 524 . 56 2 56 | -2.242 | | 2812.56247 | -2.256 | 2817.62782 | -2.236 | 2324.5000 | -2.2+1 | | 2812.56586 | -2.258 | 2617.63293 | -2.224 | 2824.59034 | -2.220 | | 2812.56975 | -2.253 | 2617.63746 | -2.210 | 2824.59420 | -2.240 | | 2812.57404 | -2.248 | 2817.64123 | -2.223 | 2824.60375 | -2.210 | | 2612.58059 | -2.243 | 2817.64793 | -2.228 | 2824.60739 | -2.232 | | 2812.58518 | -2.235 | 2817.05222 | -2.219 | 2824.01076 | -2.233 | | 2812.58977 | -2.232 | 2817.05953 | -2.219 | 2824.01415 | -2.230 | | 2812.59366 | -2.231 | 2817.06392 | -2.225 | 2824.62051 | -2.221 | | 2812.59770 | -2.235 | 2817.0680 | -2.203 | 2824.62407 | -2.225 | | 2812.61141 | -2.239 | 2817.07232 | -2.207 | 2824.02831 | -2.243 | ## TABLE 12(CONT'U) | HEL JU
(2440030+) | UMAG• | HEL JU
(2440000+) | UMAG. | HEL JD
(2440000+) | DM AG • | |--|--|--
--|--|--| | 2824.63210
2824.63551
2824.65204
2824.65703
2824.00092 | -2.202
-2.218
-2.229
-2.222
-2.258 | 2855 • 05210
2855 • 65687
2855 • 00138
2655 • 00509
2850 • 60509
2850 • 60853 | -2.144
-2.184
-2.243
-2.219
-2.193 | 2000.91045
2850.91077
2850.92001
2850.92340
2873.57400 | -2.219
-2.220
-2.221
-2.218
-1.947 | | 2824.00548 | -2.235 | 2855.67472 | -2.183 | 2873.57355 | -1.935 | | 2824.06905 | -2.202 | 2855.07838 | -2.188 | 2573.58190 | -1.917 | | 2824.67336 | -2.205 | 2855.08202 | -2.158 | 2573.55542 | -1.855 | | 2824.67737 | -2.167 | 2855.08674 | -2.2.5 | 2573.555257 | -1.813 | | 2840.55584 | -2.249 | 2856.09768 | -2.104 | 2873.59257 | -1.784 | | 2846.55998 | -2.250 | 2850.70159 | -2.191 | 2873.5908. | -1.746 | | 2840.50354 | -2.255 | 2850.70523 | -2.191 | 2573.69244 | -1.724 | | 2840.50713 | -2.243 | 2850.70902 | -2.194 | 2573.69815 | -1.664 | | 2840.57407 | -2.201 | 2850.72520 | -2.147 | 2673.61204 | -1.612 | | 2840.67484 | -2.192 | 2856.73541 | -2.104 | 2873.61268 | -1.945 | | 2840.67895 | -2.242 | 2850.73457 | -2.182 | 2873,02040 | -1.345 | | 2840.68271 | -2.192 | 2050.73691 | -2.192 | 2673,03251 | -1.345 | | 2840.70500 | -2.179 | 2850.74203 | -2.230 | 2873,63517 | -1.254 | | 2840.77231 | -2.183 | 2050.74054 | -2.237 | 2873,64319 | -1.164 | | 2040.77610 | -2.157 | 2050.75103 | -2.228 | 2873,64077 | -1.083 | | 2840.77982 | -2.100 | 2350.76554 | -2.140 | 2373.65000 | -0.899 | | 2640.70635 | -2.109 | 2856.70688 | -2.198 | 2373.65440 | -0.730 | | 2840.78942 | -2.110 | 2856.77195 | -2.144 | 2373.65973 | -0.990 | | 2840.79261 | -2.107 | 2856.77531 | -2.182 | 2373.7532 | 0.912 | | 2840.79617 | -2.105 | 2856.78952 | -2.221 | 2873.75443 | 0.045 | | 2840.82419 | -2.132 | 2650.79341 | -2.151 | 2873.79725 | 0.515 | | 2840.82356 | -2.190 | 2656.79912 | -2.240 | 2873.80333 | 0.225 | | 2840.83265 | -2.190 | 2656.60912 | -2.253 | 2873.80660 | 0.341 | | 2840.83654 | -2.113 | 2656.61233 | -2.164 | 2873.81029 | -0.147 | | 2640.83973 | -2.130 | 2656.61607 | -2.190 | 2873.81455 | -3.332 | | 2840.84294
2840.84600
2840.85083
2840.85085
2840.85316 | -2.090
-2.107
-2.138
-2.133
-2.135 | 2550.81934
2850.82375
2850.82901
2850.83290
2850.83079 | -2.218
-2.175
-2.191
-2.184
-2.211 | 2873.81934
2873.82305
2873.82027
2873.82027
2873.85115
2873.85341 | -0.559
-0.082
-0.761
-0.936
-1.106 | | 2840.86728 | -2.132 | 2656.64093 | -2.182 | 2673.84300 | -1.207 | | 2840.87156 | -2.121 | 2856.84694 | -2.214 | 2673.84655 | -1.316 | | 2840.87470 | -2.142 | 2856.85048 | -2.223 | 2867.77154 | -2.146 | | 2840.87780 | -2.141 | 2856.85394 | -2.196 | 2867.77566 | -2.139 | | 2840.83712 | -2.150 | 2856.85746 | -2.221 | 2887.77969 | -2.160 | | 2840.89046 | -2.120 | 2850.65097 | -2.222 | 2887.78560 | -2.193 | | 2840.89350 | -2.130 | 2850.87207 | -2.218 | 2887.78929 | -2.172 | | 2856.60551 | -2.174 | 2850.67828 | -2.213 | 2887.79265 | -2.193 | | 2856.60591 | -2.173 | 2850.88174 | -2.215 | 2887.79527 | -2.217 | | 2856.61234 | -2.143 | 2850.68520 | -2.214 | 2887.80000 | -2.173 | | 2850.61663 | -2.204 | 2850.88872 | -2.217 | 2887.80492 | -2.156 | | 2650.62281 | -2.203 | 2856.89431 | -2.228 | 2887.80833 | -2.251 | | 2650.63520 | -2.180 | 2856.89780 | -2.209 | 2887.82304 | -2.246 | | 2856.64133 | -2.207 | 2850.90124 | -2.190 | 2887.83489 | -2.212 | | 2856.64874 | -2.190 | 2856.90060 | -2.213 | 2887.84905 | -2.179 | ## TABLE 12(CUNT'D) | HEL JD
(2440000+) | DMAG. | HEL JJ
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | |--|--|--|--|--|--| | 2687.85291 | -2.213 | 2895.84904 | -2.150 | 2933.834J2 | -2.050 | | 2887.85660 | -2.216 | 2895.85278 | -2.183 | 2913.65104 | 0.950 | | 2887.85999 | -2.214 | 2895.85584 | -2.180 | 2918.63535 | 0.935 | | 2887.86715 | -2.213 | 2895.85143 | -2.190 | 2918.63932 | 0.934 | | 2887.87350 | -2.213 | 2895.86477 | -2.195 | 2918.84435 | 0.971 | | 2887.87393
2887.88283
2887.89390
2887.89786
2895.74071 | -2.217
-2.235
-2.248
-2.247
-2.107 | 2895.80040
2895.67034
2895.67973
2903.50474
2903.56015 | -2.198
-2:172
-:.172
-1.287
-1.213 | 2918.69656
2915.7:157
2918.7:671
2918.7:671
2918.71224
2918.71535 | -0.405
-0.427
-0.600
-0.823
-0.902 | | 2895.74408 | -2.109 | 2903.57139 | -1.157 | 2918.71342 | -0.990 | | 2895.74904 | -2.107 | 2903.57439 | -1.137 | 2916.72319 | -1.038 | | 2895.75241 | -2.107 | 2903.58110 | -0.959 | 2918.73553 | -1.345 | | 2895.75659 | -2.100 | 2903.58451 | -0.823 | 2918.73914 | -1.417 | | 2895.76656 | -2.169 | 2903.58763 | -0.755 | 2918.74959 | -1.591 | | 2895.76382
2895.76749
2895.77048
2895.78015
2895.78571 | -2.209
-2.175
-2.100
-2.203
-2.211 | 2903.59065
2903.5957-
2903.59822
2903.60154
2903.60463 | -0.674
-0.503
-0.331
-0.254
-0.107 | 2916.7553
2916.7553
2918.7553
2918.7552
3916.7641
2918.77462 | -1.619
-1.652
-1.652
-1.735
-1.933 | | 2695.78890 | -2.197 | 2903.00092 | 0.073 | 2918.77503 | -1.897 | | 2695.79222 | -2.234 | 2903.72909 | 0.280 | 2918.75417 | -1.923 | | 2895.79636 | -2.223 | 2903.73327 | 0.025 | 2918.76765 | -1.929 | | 2695.7962 | -2.218 | 2903.73597 | -0.097 | 2918.78197 | -2.003 | | 2895.80301 | -2.210 | 2903.74105 | -0.358 | 2918.79554 | -2.002 | | 2895.80638
2895.80957
2895.81550
2895.81882
2895.82752 | -2.202
-2.197
-2.204
-2.195
-2.198 | 2903.74462
2903.74778
2903.75701
2903.75992
2903.75568 | -0.461
-0.588
-0.693
-0.957
-1.166 | 2918.80045
2918.80872
2918.81192
2918.81515
2918.82229 | -2.130
-2.137
-2.133
-2.1133 | | 2895.83081 | -2.212 | 2903.77159 | -1.203 | 2918.82325 | -2.118 | | 2895.83562 | -2.191 | 2903.77476 | -1.263 | 2918.82381 | -2.115 | | 2895.84293 | -2.195 | 2903.78109 | -1.365 | 2918.82635 | -2.136 | | 2895.84622 | -2.186 | 2903.79067 | -1.669 | 2918.83667 | -2.193 | #### TABLE 12(CONT'D) | HEL JD
(2440000+) | DMAG. | HEL JJ
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG . | |----------------------|--------|----------------------|--------|----------------------|--------| | 2491.55773 | -2.809 | 249 3 • 661 30 | -2.831 | 2524.65050 | -1.340 | | 2491.56.949 | -2.844 | 249 3 • 662 95 | -2.770 | 2524.64357 | -1.173 | | 2491.57176 | -2.855 | 2493 • 669 96 | -2.715 | 2524.64743 | -0.973 | | 2491.58149 | -2.819 | 2493 • 670 90 | -2.750 | 2524.65274 | -0.836 | | 2491.58298 | -2.818 | 251 8 • 58528 | -2.080 | 2524.65237 | -0.55c | | 2491.59223 | -2.003 | 2518.59443 | -2.712 | 2524.65800 | -0.050 | | 2491.59523 | -2.004 | 2518.50971 | -2.702 | 2524.65237 | 0.007 | | 2491.59772 | -2.004 | 2518.01592 | -2.724 | 2524.65813 | 0.259 | | 2491.59874 | -2.063 | 2518.62248 | -2.730 | 2524.67289 | 0.955 | | 2491.60402 | -2.003 | 2518.62644 | -2.704 | 2524.67335 | 0.444 | | 2491.60519 | -2.000 | 2518.63188 | -2.883 | 2524.08234 | 0.370 | | 2491.61195 | -2.04z | 2518.64968 | -2.883 | 2524.73651 | 1.198 | | 2491.61297 | -2.975 | 2518.65461 | -2.855 | 2524.74646 | 1.230 | | 2491.61360 | -2.043 | 2518.65968 | -2.821 | 2524.74926 | 1.141 | | 2491.61783 | -2.608 | 2518.66459 | -2.701 | 2524.75431 | 1.243 | | 2491.61891 | -2.848 | 2518.66902 | -2.825 | 2525 • 50 755 | -2.801 | | 2491.62339 | -2.831 | 2518.67581 | +2.774 | 2525 • 571 4 + | -2.657 | | 2491.62484 | -2.045 | 2518.71290 | -2.765 | 2525 • 50 151 | -2.765 | | 2491.64665 | -2.052 | 2518.72033 | -2.627 | 2525 • 50 075 | -2.795 | | 2491.64154 | -2.845 | 2518.73041 | -2.705 | 2525 • 59220 | -2.504 | | 2491.64650 | -2.822 | 2518.76042 | -2.787 | 2525.59540 | -2.773 | | 2491.64748 | -2.800 | 2518.76465 | -2.796 | 2525.53120 | -2.775 | | 2491.64980 | -2.809 | 2518.77077 | -2.792 | 2525.63040 | -2.500 | | 2491.65603 | -2.835 | 2518.77548 | -2.766 | 2525.64020 | -2.730 | | 2491.65703 | -2.841 | 2518.77999 | -2.723 | 2525.61766 | -2.743 | | 2491.66413 | -2.853 | 2518.78446 | -2.733 | 2525.67468 | -2.891 | | 2491.66576 | -2.867 | 2518.75002 | -2.720 | 2525.67735 | -2.892 | | 2491.66994 | -2.839 | 2518.79724 | -2.750 | 2525.69135 | -2.854 | | 2491.67233 | -2.831 | 2510.60155 | -2.748 | 2525.70779 | -2.705 | | 2491.67687 | -2.832 | 2518.80719 | -2.834 | 2525.71267 | -2.744 | | 2491.67847 | -2.628 | 2518.81395 | -2.819 | 2525.72292 | -2.774 | | 2491.68525 | -2.602 | 2518.81853 | -2.840 | 2525.72901 | -2.770 | | 2491.68729 | -2.859 | 2518.83815 | -2.831 | 2525.72950 | -2.854 | | 2493.54326 | -2.764 | 2518.85468 | -2.827 | 2525.73534 | -2.8+1 | | 2493.54473 | -2.762 | 2515.86024 | -2.806 | 2525.73990 | -2.834 | | 2493.55173 | -2.823 | 2518.80809 | -2.861 | 2525,74539 | -2.372 | | 2493.55326 | -2.802 | 2518.87403 | -2.095 | 2525,79534 | -2.970 | | 2493.55849 | -2.828 | 2518.88415 | -2.789 | 2525,80136 | -2.720 | | 2493.550351 | -2.815 | 2518.88691 | -2.790 | 2525,80998 | -2.773 | | 2493.59708 | -2.840 | 2524.58518 | -2.290 | 2525,81773 | -2.913 | | 2493.59933 | -2.842 | 2524.59625 | -2.122 | 2525.82152 | -2.853 | | 2493.60451 | -2.621 | 2524.60351 | -2.176 | 2525.82603 | -2.805 | | 2493.60606 | -2.809 | 2524.60742 | -2.032 | 2525.83202 | -2.835 | | 2493.61329 | -2.800 | 2524.61243 | -1.977 | 2525.83501 | -2.704 | | 2493.61503 | -2.790 | 2524.61300 | -2.030 | 2525.84082 | -2.754 | | 2493.61925 | -2.796 | 2524.61899 | -1.779 | 2525.84501 | +2.843 | | 2493.62104 | -2.829 | 2524.02300 | -1.596 | 2525.85164 | +2.511 | | 2493.63411 | -2.722 | 2524.02709 | -1.368 | 2525.85745 |
+2.744 | | 2493.63598 | -2.610 | 2524.62720 | -1.267 | 2525.86435 | +2.769 | | 2493.64343 | -2.735 | 2524.03230 | -1.206 | 2525.87125 | -2.805 | ## TABLE 12 (CLNT'D) | | | • | | | | |--|--|--|--|--|--| | HEL JD
(2440000+) | DM AG. | HEL JD
(2440006+) | DMAG. | HEL JD
(2445050+) | DMAG. | | 2642.63164 | -2.797 | 2640.77782 | -1.821 | 2050.82833 | -2.875 | | 2642.63929 | -2.789 | 2640.78161 | -1.781 | 2050.83190 | -2.030 | | 2642.64475 | -2.791 | 2640.78662 | -1.715 | 2050.83670 | -2.617 | | 2642.65144 | -2.801 | 2640.79668 | -1.585 | 2050.83993 | -2.815 | | 2642.65667 | -2.775 | 2646.79604 | -1.445 | 2050.84215 | -2.011 | | 2642.06086 | -2.769 | 2640.79963 | -1.534 | 2000.84935 | -2.52d | | 2042.66732 | -2.765 | 2040.60347 | -1.114 | 2701.53934 | -2.7b5 | | 2042.67148 | -2.787 | 2040.60710 | -0.936 | 2701.53954 | -2.753 | | 2642.67764 | -2.841 | 2040.81150 | -0.832 | 2701.55009 | -2.7b0 | | 2642.68452 | -2.825 | 2040.61068 | -0.683 | 2701.55365 | -2.7d6 | | 2642.69576
2642.70115
2642.70686
2642.71684
2642.71496 | -2.810
-2.011
-2.018
-2.817
-2.795 | 2040.02067
2040.02401
2040.02892
2046.63350
2046.03925 | -0.340
0.079
0.366
0.656
0.963 | 2701.5000
2701.50455
2701.50455
2701.5090
2701.57000
2701.50429 | -2.695
-2.355
-2.022
-2.507
-2.324 | | 2642.71847 | -2.798 | 2040.04420 | - 1.014 | 2701.55000 | -2.479 | | 2642.72416 | -2.835 | 2046.05270 | 1.139 | 2701.59292 | -2.35 | | 2642.72832 | -2.839 | 2040.05057 | 1.109 | 2701.59705 | -2.375 | | 2642.73180 | -2.824 | 2040.66141 | 1.105 | 2701.60409 | -2.291 | | 2642.74405 | -2.810 | 2040.00407 | 1.140 | 2701.6070+ | -2.241 | | 2642.75021 | -2.823 | 2040.80859 | 1 • 1 3 3 | 2701.01406 | -2.171 | | 2642.75048 | -2.010 | 2040.07345 | 1 • 1 2 9 | 2701.01910 | -2.131 | | 2642.75916 | -2.795 | 2040.67864 | 1 • 1 5 2 | 2709.01320 | -2.776 | | 2642.70268 | -2.001 | 2640.806724 | 1 • 1 4 1 | 2709.61916 | -2.767 | | 2642.7662 | -2.010 | 2050.08246 | - 2 • 5 4 6 | 2709.62320 | -2.775 | | 2042.77270 | -2.814 | 2650.06877 | -2.644 | 2709.62701 | -2.700 | | 2042.77771 | -2.027 | 2050.09199 | -2.549 | 2709.60309 | -2.700 | | 2042.73105 | -2.813 | 2650.09503 | -2.858 | 2709.63716 | -2.771 | | 2642.73442 | -2.824 | 2650.70164 | -2.874 | 2709.64219 | -2.507 | | 2642.73773 | -2.821 | 2650.70543 | -2.684 | 2709.64675 | -2.703 | | 2642.79115
2042.79716
2042.79703
2642.80261
2642.80937 | -2.053
-2.787
-2.794
-2.797
-2.818 | 2050.71079
2050.71517
2050.71921
2050.71921
2050.72487
2050.73110 | -2.859
-2.668
-2.873
-2.862
-2.845 | 2709.05107
2709.65740
2709.60159
2709.60555
2709.67093 | -2.777
-2.782
-2.749
-2.764
-2.700 | | 2642.81989 | -2.813 | 2650.73442 | -2.819 -2.849 -2.853 -2.871 -2.859 | 2709.67977 | -2.741 | | 2642.82515 | -2.808 | 2650.73811 | | 2709.65370 | -2.711 | | 2642.83238 | -2.812 | 2050.74162 | | 2709.66939 | -2.739 | | 2642.84933 | -2.830 | 2650.74649 | | 2709.69515 | -2.736 | | 2042.80654 | -2.823 | 2650.74678 | | 2709.69869 | -2.711 | | 2642.87132 | -2.841 | 2650.75594 | -2.829 | 2709.70913 | -2.712 | | 2646.70028 | -2.042 | 2650.75716 | -2.921 | 2709.7150+ | -2.701 | | 2646.70559 | -2.596 | 2650.75790 | -2.847 | 2709.71895 | -2.097 | | 2646.70981 | -2.593 | 2650.76421 | -2.844 | 2709.72295 | -2.075 | | 2646.71407 | -2.559 | 2650.76657 | -2.808 | 2709.72691 | -2.709 | | 2646.72117 | -2.517 | 2650 • 811 03 | -2.764 | 2709.73207 | -2.706 | | 2646.75548 | -2.187 | 2650 • 815 07 | -2.775 | 2709.74114 | -2.741 | | 2646.76241 | -2.104 | 2650 • 81916 | -2.795 | 2709.74513 | -2.713 | | 2646.76672 | -2.041 | 2650 • 822 28 | -2.803 | 2709.74923 | -2.719 | | 2646.77116 | -1.955 | 2650 • 82554 | -2.821 | 2709.75299 | -2.731 | # TABLE 12 (CUNT+D) | HEL JD
(2440000+) | DMAG. | HEL JJ
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | |----------------------|--------|----------------------|--------|----------------------|--------| | 2709.75752 | -2.713 | 2817.56831 | -2.833 | 2824.51595 | -2.822 | | 2709.76408 | -2.714 | 2817.57225 | -2.829 | 2824.52105 | -2.848 | | 2709.70817 | -2.707 | 2817.57780 | -2.821 | 2824.52175 | -2.839 | | 2709.78866 | -2.604 | 2817.58179 | -2.626 | 2824.52533 | -2.817 | | 2709.79345 | -2.048 | 2817.58343 | -2.640 | 2824.53365 | -2.850 | | 2709.80021 | -2.079 | 2817.58915 | -2.834 | 2624.53726 | -2.545 | | 2612.52211 | -2.840 | 2817.59038 | -2.830 | 2824.54366 | -2.528 | | 2812.52764 | -2.853 | 2817.00054 | -2.830 | 2824.54634 | -2.528 | | 2812.53148 | -2.853 | 2017.004.26 | -2.816 | 2624.55005 | -2.521 | | 2812.53784 | -2.824 | 2817.00790 | -2.852 | 2824.55392 | -2.519 | | 2812.54123 | -2.010 | 2017.01176 | -2.061 | 2824.55708 | -2.539 | | 2812.54552 | -2.014 | 2017.01035 | -2.827 | 2824.55315 | -2.524 | | 2812.54963 | -2.057 | 2817.02086 | -2.740 | 2824.50031 | -2.528 | | 2812.55589 | -2.057 | 2017.02450 | -2.797 | 2824.55903 | -2.830 | | 2812.56287 | -2.022 | 2817.02820 | -2.777 | 2824.557271 | -2.635 | | 2612.50621 | -2.822 | 2817.03530 | -2.797 | 2824.57535 | -2.025 | | 2612.57025 | -2.822 | 2817.03769 | -2.806 | 2824.5815+ | -2.019 | | 2612.57451 | -2.844 | 2817.04158 | -2.767 | 2824.58555 | -2.016 | | 2612.58012 | -2.820 | 2817.04761 | -2.659 | 2824.56992 | -2.015 | | 2612.58473 | -2.614 | 2817.05177 | -2.849 | 2824.59360 | -2.780 | | 2812.58952 | -2.854 | 2817.05905 | -2.809 | 2824.60415 | -2.756 | | 2812.59311 | -2.861 | 2817.06517 | -2.804 | 2824.60779 | +2.778 | | 2612.59725 | -2.615 | 2017.06603 | -2.850 | 2824.61115 | -2.756 | | 2612.61198 | -2.632 | 2617.67192 | -2.797 | 2824.61455 | -2.754 | | 2612.62455 | -2.790 | 2817.67603 | -2.810 | 2824.62311 | -2.747 | | 2612.62839 | -2.794 | 2817.684 (1 | -2.602 | 2824.62307 | -2.783 | | 2612.63215 | -2.797 | 2617.68875 | -2.850 | 2824.62731 | -2.509 | | 2612.63591 | -2.795 | 2817.69333 | -2.787 | 2824.63167 | -2.522 | | 2612.64172 | -2.807 | 2817.69453 | -2.782 | 2824.63519 | -2.787 | | 2812.64544 | -2.814 | 2017.70263 | -2.793 | 2624.65162 | -2.792 | | 2812.64893 | -2.805 | 2817.71178 | -2.773 | 2824.65661 | -2.794 | | 2812.65279 | -2.805 | 2817.72290 | -2.745 | 2824.65536 | -2.013 | | 2812.65683 | -2.831 | 2817.72500 | -2.811 | 2824.05947 | -2.757 | | 2812.66354 | -2.850 | 2817.73407 | -2.857 | 2324.67378 | -2.749 | | 2812.66703 | -2.856 | 2817.75507 | -2.793 | 2040.55537 | -2.335 | | 2812.07254 | -2.822 | 2817.75384 | -2.794 | 2840.50336 | -2.840 | | 2012.67615 | -2.614 | 2017.75419 | -2.745 | 2840.50394 | -2.351 | | 2812.68550 | -2.783 | 2017.70002 | -2.788 | 2840.50773 | -2.345 | | 2817.51593 | -2.911 | 2017.70490 | -2.765 | 2840.57559 | -2.352 | | 2817.52246 | -2.811 | 2017.76947 | -2.812 | 2840.60343 | -2.772 | | 2817.52605 | -2.801 | 2817.77640 | -2.8+2 | 2840.67937 | -2.779 | | 2817.52986 | -2.847 | 2817.78206 | -2.755 | 2840.68314 | -2.769 | | 2817.53353 | -2.836 | 2817.78082 | -2.712 | 2840.75385 | -2.671 | | 2817.53949 | -2.839 | 2817.79513 | -2.714 | 2840.76446 | -2.644 | | 2817.54313 | -2.839 | 2817.79969 | -2.745 | 2840.76835 | -2.713 | | 2817.54694 | -2.858 | 2817.803383 | -2.769 | 2840.77209 | -2.811 | | 2817.55280 | -2.840 | 2817.80871 | -2.720 | 2840.77048 | -2.790 | | 2817.55644 | -2.674 | 2817.81583 | -2.750 | 2840.78019 | -2.745 | | 2817.56025 | -2.832 | 2817.82295 | -2.750 | 2840.78383 | -2.721 | | 2817.56424 | -2.828 | 2817.82290 | -2.846 | 2840.78387 | -2.098 | # TABLE 12(CONT'D) #### UV | HEL JD
(2440000+) | DMAG. | HEL JU
(2440000+) | DMAG. | HEL JD
(2440000+) | DMAG. | |----------------------|--------|----------------------|------------------------------------|----------------------|--------| | 2840.79241 | -2.711 | 2850.84661 | -2.708 -2.807 -2.820 -2.823 -2.740 | 2887.77109 | -2.334 | | 2840.79582 | -2.008 | 2850.85013 | | 2887.77597 | -2.365 | | 2840.82382 | -2.048 | 2350.85357 | | 2587.77947 | -2.311 | | 2840.82883 | -2.744 | 2850.85705 | | 2887.78517 | -2.510 | | 2840.83300 | -2.735 | 2856.85705 | | 2887.75591 | -2.533 | | 2840.82588 | -2.730 | 2850.87773 | -2.798 | 2887.79233 | -2.847 | | 2840.84005 | -2.794 | 2550.88134 | -2.786 | 2887.79569 | -2.872 | | 2840.84337 | -2.077 | 2850.88463 | -2.777 | 2687.80123 | -2.834 | | 2840.84638 | -2.008 | 2850.88830 | -2.730 | 2687.80532 | -2.884 | | 2840.85648 | -2.702 | 2850.89470 | -2.790 | 2887.80871 | -2.882 | | 2840.85970 | -2.091 | 2850.89814 | -2.756 | 2887.8220 | +2.707 | | 2840.86281 | -2.003 | 2855.90161 | -2.303 | 2887.83520 | -2.457 | | 2840.86762 | -2.757 | 2856.90097 | -2.811 | 2887.84197 | -2.507 | | 2840.87121 | -2.755 | 2856.91383 | -2.793 | 2687.84521 | -2.922 | | 2840.87433 | -2.725 | 2850.91714 | -2.791 | 2887.8450 | -2.672 | | 2840.87745 | -2.714 | 2856.92030 | -2.801 | 2857.8533 | -2.530 | | 2640.88744 | -2.750 | 2850.92302 | -2.780 | 2867.85757 | -2.757 | | 2540.89085 | -2.762 | 2873.57362 | -2.510 | 2587.86339 | -2.361 | | 2640.89388 | -2.716 | 2873.57901 | -2.485 | 2687.86672 | -2.961 | | 2856.60661 | -2.700 | 2873.58227 | -2.525 | 2867.87315 | -2.931 | | 2650.61187 | -2.717 | 2873.55584 | -2.475 | 2687.87334 | -2.363 | | 2856.61615 | -2.789 | 2373.59167 | -2.434 | 2687.89322 | -2.831 | | 2850.62226 | -2.730 | 2873.59509 | -2.404 | 2687.89434 | -2.369 | | 2856.63480 | -2.792 | 2873.59538 | -2.357 | 2895.74037 | -2.758 | | 2850.64178 | -2.813 | 2873.60204 | -2.351 | 2895.74443 | -2.791 | | 2856.64831 | -2.762 | 2673.60853 | -2.264 | 2595.74515 | -2.709 | | 2850.65170 | -2.779 | 2673.61244 | -2.225 | 2895.74672 | -2.301 | | 2856.63729 | -2.774 | 2873.61030 | -2.119 | 2895.75165 | -2.332 | | 2856.66185 | -2.622 | 2673.62005 | -1.952 | 2895.75694 | -2.796 | | 2856.66547 | -2.794 |
2873.63288 | -1.905 | 2895.75635 | -2.780 | | 2856.60891 | -2.829 | 2873.03055 | -1.910 | 2895.76417 | -2.513 | | 2856.67437 | -2.826 | 2873.04059 | -1.750 | 2895.76781 | -2.744 | | 2856.67796 | -2.776 | 2873.04040 | -1.650 | 2895.77365 | -2.748 | | 2856.68160 | -2.752 | 2873.05019 | -1.401 | 2896.773651 | -2.343 | | 2856.68534 | -2.728 | 2873.05433 | -1.253 | 2896.78554 | -2.301 | | 2856.69810 | -2.708 | 2873.06018 | -1.244 | 2895.75856 | -2.839 | | 2856.70197 | -2.783 | 2873.78858 | 1.170 | 2895.79130 | -2.337 | | 2856.70565 | -2.779 | 2873.79409 | 0.084 | 2895.79673 | -2.823 | | 2856.70939 | -2.711 | 2873.79763 | 0.371 | 2895.80002 | -2.822 | | 2856.72502 | -2.750 | 2873.60286 | -0.112 | 2895.80339 | -2.649 | | 2856.73081 | -2.705 | 2873.60025 | -0.373 | 2895.80575 | -2.320 | | 2856.73495 | -2.747 | 2873.61060 | -0.592 | 2895.80995 | -2.794 | | 2856.74303 | -2.757 | 2873.81495 | -0.627 | 2895.81521 | -2.806 | | 2856.74694 | -2.750 | 2873.81902 | -0.989 | 2895.81845 | -2.770 | | 2856.79944 | -2.691 | 2873.82260 | -1.216 | 2895.82790 | -2.858 | | 2856.80879 | -2.722 | 2873.82592 | -1.331 | 2895.83119 | -2.786 | | 2850.81198 | -2.759 | 2873.83156 | -1.389 | 2895.83630 | -2.730 | | 2856.81577 | -2.749 | 2873.83681 | -1.632 | 2895.84330 | -2.785 | | 2850.82410 | -2.721 | 2873.84335 | -1.780 | 2895.84662 | -2.804 | | 2856.84130 | -2.798 | 2873.84706 | -1.600 | 2895.85001 | +2.793 | # TABLE 12 (CUNT'D) #### JV | HEL JD
(2440000+) | DWAG. | HEL J)
(2440003+) | JMAG. | HEL JD
(2440000+) | DMAG. | |----------------------|--------|----------------------|--------|----------------------|--------| | 2895.85313 | -2.791 | 2903.73268 | -0.261 | 2918.71907 | -1.535 | | 2895.85619 | -2.601 | 2903.73634 | -0.415 | 2918.72284 | -1.512 | | 2895.86103 | -2.621 | 2903.74133 | -0.791 | 2918.73595 | -1.830 | | 2895.86439 | -2.630 | 2903.74429 | -0.981 | 2918.73952 | -1.970 | | 2895.86806 | -2.810 | 2903.74745 | -1.159 | 2918.74945 | -2.170 | | 2895.87671 | -2.756 | 2903.75071 | -1.400 | 2918.75366 | -2.145 | | 2895.88010 | -2.760 | 2903.75960 | -1.450 | 2918.75724 | -2.169 | | 2903.56437 | -1.686 | 2903.76835 | -1.701 | 2918.76356 | -4.234 | | 2903.56851 | -1.637 | 2903.77194 | -1.726 | 2918.76455 | -2.546 | | 2903.57165 | -1.770 | 2903.77511 | -1.830 | 2918.77552 | +2.511 | | 2903.57474 | -1.710 | 2903.78077 | -1.847 | 2915.7784 | -2.459 | | 2905.58077 | -1.568 | 2903.79632 | -2.201 | 2918.78374 | -2.543 | | 2903.58416 | -1.486 | 2918.63062 | 1.104 | 2918.78751 | -2.566 | | 2903.58728 | -1.376 | 2918.63385 | 1.175 | 2918.79150 | -2.569 | | 2903.59030 | -1.266 | 2918.63992 | 1.083 | 2918.79514 | -2.547 | | 2903.59339 | -1.169 | 2918.04500 | 1.045 | 2918.8050 | -2.058 | | 2903.59860 | -6.942 | 2918.09051 | -5.693 | 2918.8053 | -2.722 | | 2903.60186 | -6.742 | 2918.70145 | -5.602 | 2918.8152 | -2.745 | | 2903.60506 | -0.039 | 2918.70708 | -1.125 | 2918.81463 | -2.771 | | 2903.60924 | -0.393 | 2918.71189 | -1.310 | 2918.82191 | -2.711 | | 2903.72876 | 0.190 | 2918.71545 | -1.434 | 4918.82665 | -2.735 | Three color light curves of U Cephei in magnitudes. The data are that of Table 12. Figure 3. September; 12, 15, 21, and 23 October 1975, were initially eliminated. Data in the region 0.12-0.25P show two distinct levels, corresponding to observations separated by about one year. Since the transformations discussed above gave consistent results, this separation of about 0.11 appears to be real. The question as to which level represents the "less perturbed" state of the system is thoroughly discussed in the next chapter. Normal points were obtained by taking simple means of the magnitudes in bins 0.005P wide. These normal points, converted to intensity units and normalized, appear in Table 13 and are plotted in Figure 4. The normalization factors were 4.330859 for visual, 7.790122 for blue, and 13.033859 for ultraviolet. For reasons alluded to in the previous paragraph and discussed fully in Chapter IV, the higher level in the region 0.12-0.25P was not used in forming the normals of Table 13. Observations on 25 March, 4 April, and 18 September 1975, form this higher level. #### TABLE 13 NURMAL PUINT INTENSITIES U CEPHL1 | PHA5E | INI EIL | PHASE | INTEN. | PHASE | INTEN. | |---------|-------------|-----------------|----------|---|-------------| | THASE | 1 | 1,,,,,,, | 11112111 | * | *********** | | 0.00297 | 0.1139 | 0.29770 | 1.0102 | 0.50723 | 1.0319 | | U.U0725 | v. 1121 | 0.30272 | 0.9844 | 0.57220 | 0.9967 | | 0.01278 | 0.1111 | 0.30707 | 1.0258 | J.37755 | 1.3000 | | 0.01771 | 0.i337 | 0.31245 | 1.0210 | J.38210 | 1.0027 | | 6.02204 | U.1772 | 0.31360 | 1.0001 | U • 38731 | 1.5204 | | 0.02789 | J. 2302 | 0.32190 | 1.0115 | 0.59145 | 0.9927 | | 6.63253 | U . 30 Y3 | 0.32743 | 1.00003 | 0.03411 | Ŭ•9778 | | J.03689 | 0,3917 | 4 1 ا د د د پ | 1.0050 | 0.00902 | 1.0214 | | 0.04192 | J-4042 | 0.03712 | 3.9950 | 0.01195 | 0.4954 | | 0.04649 | U. 3438 | U. 34230 | 1.0207 | v•61€33 | 0.9957 | | 0.65191 | U . 3 3 U 4 | U . 34 78 E | 1.0147 | 0.02155 | 1.0077 | | 6.00712 | 0.7200 | v• 35∠/3 | 1.0029 | မှ • ၁၉၀၁) | 1.3134 | | J.JO274 | U.JUZU | 0.35/01 | 1.0250 | Ç∙03∠8> | 1.0100 | | U.Juba3 | 160001 | ∪ • 36291 | 1.0000 | Ე•∪3८৪1 | 1.0333 | | 0.07293 | U. 9007 | 0.30756 | 1.0673 | 0.04220 | 1.3128 | | C.07794 | 1-60-61 | 0.37237 | 0.9954 | 3.04030 | 1.3377 | | 0.12255 | 00 500b | 0.37721 | J. 9000 | 0.35301 | 1.3038 | | 0.12718 | 0.4702 | U.3020 J | 1.0014 | J•95701 | 1.5400 | | 0.13400 | UD 7769 | 0.J 035∠ | 1.0021 | 0.00524 | 1.3387 | | (.13033 | 6.9750 | 0.39394 | 1.0152 | 0.00017 | 1.3700 | | 0.14304 | 1.5102 | 0.39709 | 3.9942 | 0.07343 | 1.0700 | | 0.14730 | U . 7740 | 0.40299 | 0.9730 | J∙03470 | 1.0150 | | C.15244 | しゅうひごひ | V • 4 V 3 V U | 1.0000 | ≎•08786 | 1.0329 | | 0.15944 | 0.9712 | じゅゅうしょり | 1.31.27 | 1.092.7 | 1.0020 | | 0.10249 | 1.0114 | ↓.43800 | 1.0629 | v•04770 | 1.0512 | | 0.17243 | 0.9/09 | 0.44220 | 1.0043 | J.70275 | 1.36.5 | | ŭ.17750 | 1.0000 | 0.44741 | 1.0000 | J.70734 | 1.0303 | | 0.16107 | 100201 | 6.45225 | 0.9900 | 3.71503 | 1.0303 | | 0.18796 | 10 6676 | 6.45751 | Ç. 9809 | U •71723 | 1.0228 | | 0.19053 | 0.3243 | 0.40211 | U. 99UC | 0.72242 | 1.0223 | | 0.19700 | 1.0190 | 4. 46753 | J. 9841 | 0.73235 | 1.3141 | | 0.20214 | 100012 | 0.47146 | U. 905/ | J•/3665 | 1.0372 | | 0.20087 | 10 マンゴラ | J • 47c 31 | 0.9700 | 0.74170 | J.997J | | 0.21194 | U . 4702 | 0.46214 | 0.9073 | 3.74733 | 1.0097 | | 6.21715 | 10001 | 0.46722 | U. 770J | J.70010 | 1.0087 | | 0.22253 | 1.0200 | 6.49270 | 0.9003 | 0.77310 | 0.9849 | | 0.22939 | 100196 | U • 477+4 | 0.9010 | 3.77549 | J.9825 | | 0.23328 | 1.0124 | v. su177 | 0.9738 | 0.78115 | J.9557 | | C.23003 | 100202 | 0.36039 | 0.9010 | 0.79323 | 0.9019 | | 0.24217 | 100204 | 6.51219 | ÿ∎94 ÿ5 | 0.79792 | 0.4098 | | 0.24731 | 1.0237 | 0.51725 | U. 9937 | 0.03117 | 0.9453 | | 0.65217 | 1.0107 | ひ・ちょうしひ | 0.5708 | 0.007+5 | 0.4509 | | U.25795 | 1.0001 | 6.52703 | U. 9851 | J.81265 | 0.9500 | | 6.20205 | 100295 | 0.53202 | 0.9910 | 0.31831 | 0.4545 | | 0.20727 | 100337 | 0.53791 | 1.0137 | ÷62244 | 0.4000 | | 0.27231 | 1,0071 | 0.54290 | 0.9882 | 0.32795 | 3.9001 | | 0.27701 | 1.0245 | 0.54810 | 0.9915 | 0.831 40 | J.9020 | | 0.28159 | 1 1 3 . | 0.55252 | J. 9097 | J. 33779 | 0.9910 | | 0.26701 | 1.0200 | ○ • シシ74 5 | 1.0123 | 0.34220 | 0.9713 | | 0.29310 | 1.0004 | ს∙ უს250 | 1.0003 | 0.84638 | J.98J3 | #### TABLE 13 (CUNTO) | PHASE | INTEN. | PHASE | INILN. | PHASE | INTEN. | |---|--|---|--|---|--| | J.85212
0.85717
0.86240
0.86739
0.87288 | 0.9717
0.9889
0.9043
0.9552
0.9545 | 0.92773
0.93244
0.93727
0.94234
0.94754 | 0.6769
0.6291
0.7005
0.7040
0.0227 | 0.95704
0.97217
0.97633
0.98204
0.98777 | 0.3171
0.2241
0.1724
0.1273
0.1165 | | 0.87581
0.91775 | 0.9516 | 0.95269
0.95758 | 0.4508 | 0.99211
0.99707 | 0.1154
0.1140 | ## TABLE 13 (CLNT . D) ## DLUE | PHASE | INIEM. | PHASE | INILN. | PHASE | INTEN. | |---|---|---|--|---|--| | 0.00297
0.00725
0.01278
0.01771 | 0.0515
0.0515
0.052 | 0.29310
0.29770
0.30272
0.30707
0.31245 | 1.0006
1.0078
0.9950
1.005
0.9883 | 0.50230
0.30757
0.57204
0.57700
0.58245 | 0.9504
0.9027
0.9016
0.9905
1.0134 | | 0.02204
0.02789
0.03253
0.05689
0.04192 | 0.1325
0.2595
0.2591
0.5501 | 0.31506
0.32198
0.32743
0.3314 | 0.9909
1.0013
1.0000
0.991≥ | 0.53731
0.59145
0.60411
0.00821 | 1.0035
0.9056
0.9565
0.9565 | | 0.04649
0.05191
0.05712
0.06274
0.66685 | 0.4910
0.5924
0.6875
0.7636 | 0.35712
0.34236
0.34788
0.3573
0.35751 | 0.9534
0.9546
0.9378
0.9132 | 0.61193
0.02241
0.02241
0.02cu8
0.03230 | 0.9759
0.9722
0.9587
0.9625
0.9821 | | 0.07290
0.07290
0.03412
0.03412 | 0.9003
0.9079
0.9072
0.9073 | 0.33701
0.30552
0.30700
0.37105
0.37721 | 0.9509
0.9509
0.9900
0.9900 | 0.03230
0.03081
0.04220
0.04830
0.00403 | 0.955b
0.955b
0.9994
1.0101
1.0129 | | 0.12718
0.13438
0.13533
0.14504 | 0.9569
0.9616
0.9749
0.9801 | 0.38289
0.38552
0.39394
0.39709 | 0.9012
0.9959
1.0108
0.9337 | 0.05777
0.05247
0.05817
0.07340 |
1.0010
1.0010
1.0010 | | 0.14700
0.15244
0.15944
0.16249 | 0.9709
0.9091
0.9422
0.9660 | 0.40299
0.40798
0.40199 | J. 9554
C. 9437
I. 0114
J. 9755 | 0.08476
0.06760
0.09207
0.09776 | 1.0193
1.0189
1.0530
0.9907 | | 0.17243
0.17756
0.15137
0.18796 | 0.9422
0.9977
0.9991
0.9410 | 0.44220
0.44741
6.45238
0.45705 | 1.0136
1.0698
1.6227
1.0231 | 0.70275
0.70732
0.71560
0.71725 | 1.0029
1.0108
1.0175
1.0104 | | 0.19058
0.19706
0.20214
0.20087
0.21194 | 0.9575
0.9615
1.0098
0.9712
0.9569 | C.40234
C.40750
C.47140
C.47091
C.48214 | 1.0238
1.0098
1.0109
1.0129
1.0070 | 0.72242
0.73265
0.73665
0.74176
0.74753 | 1.0138
0.9905
0.9893
1.0094
0.9941 | | 0.21715
0.22283
0.22939
0.23328
0.23603 | 0.9757
0.966.0
0.9663
0.9663
0.9669 | 0.46722
0.49203
0.49734
0.50222
0.50059 | 1.0027
0.9890
0.9942
0.9974
0.9620 | 0.76986
0.77310
0.77649
0.78116
0.79328 | 0.9549
0.9386
0.9110
0.9429
0.9392 | | 0.24217
0.24751
0.25217
0.25795
0.25265 | 0.9750
0.9921
1.0115
1.0280
1.0222 | 0.51219
0.51741
0.52308
0.52703
0.53223 | 0.9059
0.9779
0.9997
0.9987
0.9812 | 0.79792
0.80117
0.80749
0.61265
0.61851 | 0.9191
0.8940
0.9209
0.9108
0.9197 | | 0.26727
0.27231
0.27761
0.28159
0.28761 | 1.0185
1.0125
1.0115
1.0062
0.9990 | 0.55308
0.54290
0.54816
0.55252
0.55745 | 0.9992
1.0205
0.9735
0.9902
0.9795 | 0.82190
0.62793
0.83140
0.83779
0.84226 | 0.9464
0.9030
0.9476
0.9772
0.9875 | | | | | | | | # TABLE 13 (CUNT'D) | PHASE | INTEN. | PHASE | INTEN. | PHASE | INTEN. | |---------|--------|---------|--------|---------|--------| | 0.84038 | 0.9705 | 0.92278 | 0.9125 | 6.96230 | 0.3208 | | 0.83212 | 0.9727 | 0.92773 | 0.8677 | 0.96704 | 0.2572 | | 0.85717 | 0.9750 | 0.93244 | 0.8111 | 0.97217 | 0.1013 | | 0.85240 | 0.9018 | 0.93727 | 0.7351 | 0.97053 | 0.1032 | | 0.86739 | 0.9023 | 0.94234 | 0.6063 | 0.90204 | 0.0595 | | 0.87288 | 0.9000 | 0.94754 | U.5083 | 0.98777 | 0.0512 | | 0.87531 | 0.9490 | 0.95269 | U.4930 | 0.99211 | 0.0508 | | 0.91775 | 0.9249 | 0.95758 | U.4070 | 0.99707 | 0.0519 | # TABLE 13 (CUNT D) W | PHASE | 11.1 EN. | PHASE | INTEN. | PHASE | INTEN. | |---------|------------|-----------------|------------------------|------------------------|---------| | | | | | | | | 0.00445 | | 0.51025 | 1.0325 | û.58 7 90 | 1.0131 | | 0.00235 | 0.0200 | | | | | | 0.00647 | U.UZUB | 0.32184 | 1.0211 | 0.59212 | 1.0.75 | | 0.01290 | 0.0250 | 0.32739 | 1.0161 | 2.00004 | 0.9015 | | 0.01772 | 0.0472 | 0.33299 | 1.0450 | 0.01283 | 0.9974 | | 0.02256 | 0.0940 | 0.33725 | 1.0230 | 0.01739 | 0.9405 | | 0.02785 | 0.1035 | 0.04245 | 1.0250 | 0.02237 | 0.9554 | | 0.63254 | 602403 | 0.34779 | 1.0122 | 0.02079 | 1.5244 | | 0.03683 | 0.3103 | 0.35207 | 1.0171 | 3.53102 | 1.0514 | | 0.04199 | U.4U.U | 0.35700 | 1.0422 | 3.65099 | 1.3024 | | 0.04044 | V. 4021 | 0.30207 | 1.0013 | 3.54231 | 1.0102 | | | | | | | | | 0.05199 | U. 2777 | U.SU721 | 1.0133 | 0.04021 | 1.0000 | | 0.05728 | U. 7182 | 0.37101 | 1.0210 |)•∪53∠5 | 1.3321 | | 0.06268 | U. 7977 | じ。37537 | U. 9932 | ∪. 05795 | 1.3203 | | 0.06675 | しょむりつと | ≎•⊃ຍ∠ວຽ | 1.6/50 | 0.06241 | 1.3919 | | 0.07274 | U. 9381 | 0.30903 | 1.0479 | ე•ცხნქა | 1.3094 | | 1 07676 | V | C 46.1.1.2 | 1.0505 | 0.07278 | 1.0702 | | 0.07674 | 0.09502 | 0.39118 | | J.08457 | 1.0702 | | 0.08318 | 0.9971 | y • 39049 | 0.9702 | | | | 0.12291 | しょりにとび | 0.40287 | 1.0199 | J. 035 04 | 1.0499 | | 0.12098 | U20000 | 0.40021 | 1.0070 | 3.39135 | 1.0419 | | 0.13422 | 1.0035 | 3.43198 | 1.0542 | 0.69752 | 1.0751 | | 0.13833 | 1.0694 | J • 4330E | 1.0544 | 0.70270 | 1.0557 | | 0.14212 | 3606 | 0.44225 | 1.0047 | 2.73735 | 1.5290 | | 0.14050 | 1.0234 | 0.44739 | 1.0103 | 1./1200 | 1.3093 | | 3.15228 | U. YU48 | 0.45660 | 1.0441 | J.71051 | 1.1643 | | 0.15901 | UA 9023 | 0.45750 | 1.0011 | 0.72336 | 1.0575 | | | | | | 79 . | • | | 0.16205 | U. 9127 | 0.4022 <u>1</u> | 1.0370 | 0.70249 | 1.0220 | | 0.17259 | 0.951B | U . 40 73 7 | 1.0344 | 0.73071 | 1.0200 | | 0.17042 | C - 7 / 72 | 0.47120 | 1.0033 | 3.74177 | 1.5422 | | 0.20214 | UA 94.00 | 0.4/003 | 1.0373 | 0.74735 | 1.0040 | | 0.20005 | 6.4042 | V•40215 | 1.0003 | 0.70132 | 0.3573 | | 0.21015 | U. 9400 | 0.46727 | 1.0007 | 3.7724+ | 0.9791 | | 0.21812 | U . 4454 | 0.49275 | 1.0008 | 5.77032 | 0. 3300 | | 0.22200 | 100100 | 0.49734 | 1.0501 | 0.78102 | 0.3950 | | 0.23309 | U 29992 | 6.56147 | 1.0005 | J. 79325 | 0.9193 | | 0.23807 | 49926 | 0.30033 | 1.0002 | 0.79739 | 0.9732 | | ••2000. | | •••• | | | | | 0.24232 | 1.0170 | 0.51306 | 1.0118 | 0.80065 | 0.8990 | | 0.24740 | 1.0000 | 0.51753 | 1.0320 | 0.89743 | 0.9424 | | 0.25210 | 1.6317 | 0. ∪23€5 | 1.0144 | J.01251 | 0.9435 | | 0.25811 | 1.0490 | 4.52737 | 1.0028 | Ů• 813 €4 | U. 4838 | | 0.26529 | 1.0330 | 0.53197 | 1.0240 | 0.82250 | 1.0000 | | 0.24304 | | e a 410 | 1.0143 | 0.82800 | 1.0095 | | 0.26794 | 1.0575 | 0.50810 | | 0.02000 | 0.9621 | | 0.27247 | 1.0410 | 0.54274 | 1.0010 | U • 33153
U • 33774 | 1.0538 | | 0.27744 | 1.0207 | 0.54084 | 1 • 01 45
1 • 01 70 | 0.84231 | 1.0372 | | 0.28142 | 1.0105 | 0.55217 | | | | | 0.26778 | 0.9810 | 0.55733 | 3.9831 | บั•ส473ย | 1.0276 | | 0.29248 | J. 9851 | 0.56324 | 0.9983 | 0.85124 | 0.9835 | | 0.29704 | 100122 | U.50757 | 1.0190 | 6.85055 | 1.0033 | | 0.30104 | 100077 | 0.57257 | 0.9037 | U.80255 | 1.3357 | | 0.30679 | J.9994 | 0.57700 | 0.9914 | ↓. 30730 | 1.0213 | | 0.31249 | 1.0617 | 0.50232 | 1.5253 | 0.87∠80 | 0.9953 | | _ | | | | | | ## TABLE 13(CUNT'D) | PHASE | 1107 -111 | PHASE | INTEN. | PHASE | INTEN. | |------------------|-----------|-----------------|--------|---------|--------| | 0.87597 | 0.9928 | 0.95308 | 0.5013 | 0.98230 | 0.3427 | | 0.92825 | 0.0279 | 0.95774 | 0.4055 | 0.98095 | 0.0272 | | 0.93193 | 0.7008 | 0.9023 <i>0</i> | 0.3015 | 0.99305 | 3.5272 | | 0.93 7 38 | 0.7070 | 0.90771 | 0.2455 | 0.99740 | | Three color light curves of U Cephei in normalized intensity units. The data are that of Table 13. Figure 4. #### CHAPTER IV #### RECTIFICATION #### Fourier Analyses The initial Fourier analysis was obtained for normal points taken as described above, including both levels in the region 0.12-0.25P. These coefficients are labelled \mathbf{F}_1 in Table 14. Data in the regions 0.90-0.10P and 0.40-0.60P were not used in the analysis in order to avoid the eclipses. The defining relationship is $$I = A_0 + A_1 \cos \phi + A_2 \cos 2\phi + A_3 \cos 3\phi + A_4 \cos 4\phi + B_1 \sin \phi$$ $$+ B_2 \sin 2\phi + B_3 \sin 3\phi + B_4 \sin 4\phi .$$ The phase angle inside eclipse was rectified by $$\sin^2 \Phi = \frac{\sin^2 \phi}{1 - \cos^2 \phi} ,$$ with z = 0.021. The result of this Fourier analysis was unsatisfactory since if left secondary eclipse inverted in all three colors and put the bottom of primary negative in the blue and ultraviolet. This was anticipated since the shoulders of primary eclipse do not match for this choice of normal points. Next a graphical analysis was made following the procedure of J.E. Merrill (Merrill, 1970). These coefficients are labelled \mathbf{F}_2 in Table 14. This gave reasonable results for \mathbf{A}_2 , but positive values for \mathbf{A}_1 , contrary to theory. The \mathbf{B}_1 and \mathbf{B}_3 coefficients in the ultraviolet are quite unacceptable. Higher order harmonics may be present in the blue and ultraviolet, which leads to the suspicion that even the data treated here, considered to be less perturbed, are somewhat affected. At this point a reexamination of the data seemed appropriate. Two regions in particular were felt to be responsible for the peculiar results of the first analyses. The region from 0.75P to primary eclipse has a noticeable downward trend, seemingly indicative of gas streaming effects. This downward trend is a permanent feature of the light curve. Likewise the dual level of light from after primary to 0.25P requires resolution. Consideration of the Roche model in conjunction with the hydrodynamical gas streaming models (e.g., Prendergast and Taam, 1974) indicate that during periods of increased activity, the light level just after primary should be slightly depressed. Thus it was assumed that the higher level represented the "less perturbed" state of the system. The Fourier analysis of the tops when the higher level is used, however, again yielded aberrant results for A₁. This result can also be anticipated since no equivalent "less perturbed" level exists prior to primary eclipse. A short region analysis of the same data excluding the points greater than 0.75P did not improve the situation. The cause of this failure, however, seemed to be that the solution was not sufficiently constrained to yield valid results. Similar Fourier analyses were run to test the results when the lower level after primary is used. These coefficients came closer to matching theory, especially in the ultraviolet. The same short region analysis indicated in the previous paragraph seemed to improve the situation in the visual and blue. The same caution concerning the constraint on the solution should be emphasized here, especially in view of the very unusual values obtained in the ultraviolet. These coefficients are listed as F_3 in Table 14. A recent solution of the U Cephei system by Hall and Walter (1974) obtained Fourier coefficients closely matching theory by means of a very short region analysis in the region 0.25P to just before secondary eclipse. This is probably the only region of the light curve relatively undisturbed by gas streaming effects. When this approach was applied to my data, completely unrealistic results were obtained. Hall and Walter's analysis is on only five
normal points to find A_0 , A_1 , and A_2 . It would seem mathematically fortuitous that such a procedure would yield usable results. In addition, these three coefficients cannot account for the harmonic variation of the tops of the light curve. At this point numerical least squares methods were abandoned since consistent, realistic results seemed impossible to obtain. The lower level following primary eclipse yielded the most encouraging results and will be used in the next analysis. The data for the graphical solutions were now reexamined. If only terms up to 2ϕ are important, then linear solutions result from the graphical approach. Data points which deviated significantly from the apparent linear solutions were temporarily ignored, in order to obtain better approximations to the more important terms. This approach appeared to reap better results. Using the linear coefficients thus obtained, a process of trial-and-error was followed to obtain the other terms and better the approximations to the linear terms. During the trial-and-error process, the following guidelines were helpful: - 1) Fix the coefficients to approximate theory; - Produce flat tops to the light curves tempered with knowledge of known nonconformity from other solutions; - 3) Fix the sine terms to reproduce in shape the total portion of the unrectified primary eclipse; - 4) Produce secondary eclipse of roughly the same depth as the original data. The following comments need to be emphasized about the above guidelines: Number one may not be important since U Cephei is known to be highly unstable. It was thus accorded low weight in the trial-and-error process; - 2) Number two was adhered to so long as terms up to 4ϕ were still apparent in the residuals; - affect both eclipses in a similar way. The secondary eclipse was sufficiently shallow in the blue and ultraviolet to render it useless for this determination. The shape of the rectified curve in the total portion of the primary eclipse is somewhat sensitive to the sine terms, and the complete symmetrization of the eclipse cannot be achieved without doing severe damage to the resulting total portion. Assuming gas streaming to be important in the observed asymmetry, such gas streaming cannot be rectified by any simple combination of sine terms. Guideline three was used as a compromise, realizing that the full asymmetry could not be removed by the sine terms; - 4) Number four was very difficult to achieve, especially in light of guideline three. The resulting secondary eclipses were shallower than have been previously reported. A possible explanation for this will be discussed in a later chapter. The resulting coefficients of the trial-and-error process are labelled \mathbf{F}_4 in Table 14. These will be used in the initial solution, with the caution that rerectification may be necessary. A word about the errors of the coefficients listed in Table 14 seems appropriate. The machine solutions do indeed yield errors for the coefficients. These errors, Table 14 Fourier Coefficients F₁ is the machine solution for all normal points outside eclipse. F₂ is the graphical approach. F₃ is the machine short region solution using the lower level after primary eclipse. F₄ is the trial and erro | | A ₀ | ٧ | A2 | A | Α4 | $^{B}_{1}$ | B ₂ | B ₃ | B | |------------------------|----------------|--------------|---------|-------|----------|------------|----------------|-----------------|---------| | Visual | | | | | | | | | | | $F_{1\sigma}$ | 1.002 | 0.023 | -0.017 | 0.025 | -0.003 | 0.014 | 0.0134 | 0.002 | -0.014 | | F2 2 | 0.990 | -0.0033 | -0.0382 | 0.012 | 0 0 0 - | 7 1 | 82 + | ۳ ، | +1 (| | 1
1
1 | 0.62 | 0.48 | 29.0 | 0.48 | 0.62 | 0.27 | 0.0122 | 0.27 | -0.0159 | | F ₃ | 0.960 | -0.06
± 7 | -0.04 | 0.019 | 600.0 | 0.035 | 0.04 | 0.02 | -0.005 | | H | 0.994 | -0.023 | 910-0- | 77 0 | | 67 = | ÷ (| ۲۰ _ا | ± 12 | | 31ue | | |)
) | > | | 0.000 | 0.0122 | 0.0 | -0.012 | | | · | | | | | | | | | | $^{\rm F}{}_{1\sigma}$ | 1.004 | 6.073 | 0.024 | 0.045 | 0.014 | 0.015 | 0.012 | -0.005 | -0.020 | | | • • | | 11 | н | on
+1 | ۲۰
۲۰ | + 4 | 41 | +1 | | F2r2 | 0.933 | 0.084 | -0.084 | 0.046 | -0.044 | 0.048 | 0.0051 | 0.0 | -0.024 | | т | 0.977 | -0.002 | 0.03 | 0.051 | 0.049 | 200 | 50.0 | , | 76.0 | | . | + 23 | ¥6 + | ÷ 2 | S 7 | 111 | 4 | 9 | 0 +1 | 1.003 | | т.
4 | 0.976 | -0.020 | -0.006 | 0.0 | 0.0 | 0.023 | 0.005 | 0.0 | -0.010 | | Ultraviolet | | | | | | | | | | | 7, | 1.028 | 0.062 | 0.033 | 0.051 | 0.021 | -0.013 | 310 0- | .00.01 | 6 | | 0 | ± 27 | ± 32 | ± 43 | ÷ 19 | + 21 | 9 | 10 | 0 0 0 0 0 | -0.032 | | 77, 27 | 0.941 | 0.095 | -0.076 | 0.0.0 | -0.066 | -0.63 | 0.0.0- | -0 11 | 9900 | | • | 05.0 | 0.76 | 0.96 | 0.76 | 96.0 | 06.0 | 0.83 | 06.0 | 68.0 | | F3 | 1.19 | 0.35 | 0.17 | 0.11 | 0.004 | -0.13 | -0.18 | -0.12 | -0.083 | | L | | 71 - | 0 | *1 | + 13 | ر
+ ا | 7 7 | 41 | ± 21 | | | 1.004 | 8100- | 2000 | < | • | 000 | | | | however, are mathematical in nature, dependent upon the number of coefficients to be solved for in the solution. They are important as an indication of the mathematical significance of a given coefficient, but beyond that their use is illusory at best. The errors involved in the graphical approach and especially in the trial-and-error approach would be difficult to evaluate and have not been given. The coefficient of determination, r^2 , is given to indicate the "goodness of fit" for the graphical solution. Listed in Table 15 are the theoretical reradiation coefficients, $\rm C_0$, $\rm C_1$, $\rm C_2$, obtained from the theory of Russell and Merrill (1952). Using their equations 107 we have $$C_{1} = -A_{1} = 0.40(G_{c} - G_{h})\sin i ,$$ $$C_{0} = -(0.75 - 0.25\cos^{2}i)\frac{G_{c} + G_{h}}{G_{c} - G_{h}}A_{1}\csc i ,$$ $$C_{2} = -0.25\frac{G_{c} + G_{h}}{G_{c} - G_{h}}A_{1}\sin i ,$$ $$(4-1)$$ where i is the angle of inclination. In order to obtain G_c + G_h and G_c - G_h , use Russell and Merrill's equation 104, $$G_c/G_h = J_h/E_h^2 / J_c/E_c^2$$, (4-2) where J's are apparent surface brightnesses and E's are luminous efficiencies. If we assume that the J's can be given by Planck's law, then the E's are given by, $$E_{\lambda,T} = J_{\lambda,T}/\sigma T^4$$, Table 15 Reradiation Coefficients Russell-Merrill Theory | | C ₀ | с ₁ | c ₂ | λ _{eff} (Å) | |-------------|----------------|----------------|----------------|----------------------| | Visual | 0.040 | 0.051 | 0.013 | 5500 | | B1ue | 0.020 | 0.024 | 0.007 | 4 3 0 0 | | Ultraviolet | 0.010 | 0.011 | 0.003 | 3500 | where σ is the Stefan-Boltzmann constant. We can write $\boldsymbol{J}_{\lambda\,,\,T}$ as, $$J_{\lambda,T} = \frac{c_1^{\lambda^{-5}}}{c_2^{\lambda}T},$$ where $c_1 = 3.74 \times 10^{-5} \text{ erg cm}^2 \text{ sec}^{-1}$, $c_2 = 1.439 \text{ cm deg}$, λ is wavelength in cm, T is temperature in degrees Kelvin. Letting, $$\beta = c_2/T$$, and expanding (e^{β} - 1) by the binomial theorem, the maximum value of β can be obtained by differentiating $E_{\lambda,T}$ with respect to β and setting the result equal to zero. This results for a specific wavelength in, $$\beta_{\text{max}} = 4$$, Letting, $$E = E_{\lambda,T}/E_{max}$$ and $$J = J_{\lambda,T}/J_{max}$$, it can easily be shown that, $$log(J/E^2) = 3.0946 - 8log\beta + log(e^{\beta} - 1)$$ (4-3) Using approximate values derived from my Wilson-Devinney computer solution (Wilson and Devinney, 1971) of U Cephei, equation (4-3) is solved for both stars. Then equation (4-2) is solved and the results are inserted into equations 108 of Russell and Merrill in the form $$G_{c} + G_{h} = \left[\left(\frac{G_{c}}{G_{h}} \right)^{\frac{1}{2}} + \left(\frac{G_{h}}{G_{c}} \right)^{\frac{1}{2}} \right] (I_{c}I_{h})^{\frac{1}{2}} r_{c}r_{h}$$, $$G_{c} - G_{h} = \left[\left(\frac{G_{c}}{G_{h}} \right)^{\frac{1}{2}} - \left(\frac{G_{h}}{G_{c}} \right)^{\frac{1}{2}} \right] (I_{c}I_{h})^{\frac{1}{2}} r_{c}r_{h}$$, where the I's are the specific intensities of the stars and the r's are the fractional radii of the stars. Equations (4-1) then yield C_0 , C_1 , and C_2 . In the absence of effects other than reradiation, C_1 equals $-A_1$. #### Rectification Formulas The following formulas were used to rectify the intensities with the coefficients $\mathbf{F_4}$ of Table 14. The formulas follow from the Russell-Merrill theory. Visual $$I' = I - 0.040 + 0.023\cos\phi + 0.013\cos2\phi$$ $$- 0.0065\sin\phi - 0.0122\sin2\phi + 0.012\sin4\phi ,$$ $$I'' = I'/(1.034 - 0.003\cos2\phi) ,$$ B1ue $$I' = I + 0.030 + 0.020\cos\phi + 0.010\cos2\phi$$ $$- 0.023\sin\phi - 0.005\sin2\phi + 0.010\sin4\phi ,$$ $$I'' = I'/(1.006 + 0.004\cos2\phi) ,$$ Ultraviolet $$I' = I + 0.010 + 0.018\cos\phi + 0.003\cos2\phi$$ $$- 0.020\sin\phi - 0.005\sin2\phi + 0.008\sin4\phi ,$$ $$I'' = I'/(1.014 + 0.0007\cos2\phi) ,$$ where ϕ is the phase angle and I the observed intensity. Notice that in the blue, the constant term on the right hand side of the first equation is not C_0 . Some adjustment was necessary to obtain a better fit. The coefficient of $\cos 2 \phi$ in the same equation was also adjusted from the model value C_2 . Table 16 shows the mean intensities after the above rectification taken over quarter phase intervals. No obvious residual periodicity remains that can be accounted for by sine or cosine terms up to 4ϕ . In light of the guidelines stated earlier for the trial-and-error analysis, it would be instructive to examine the relative success of each before proceeding with the solution. By carefully examining Table 14 it is clear the size and sign of several of the coefficients (notably A₁ and A₂) are critically dependent upon the particular set of data used in the Fourier analysis. This seems to support the observation made earlier that some residual perturbations remain of which proper account cannot be taken by the standard analysis. Indeed, these
perturbations should be expected since the observations were taken during a period of increased activity. It appears doubtful, in fact, after examining light curves of U Cephei from past epochs, whether anyone has observed this system in a state when problems with the formal rectification do not arise. It would seem advisable, therefore, to find a set of coefficients which closely resemble what one would expect from the Russell-Merrill theory. Table 16 shows that some nonconformity exists of which gas streaming models can, hopefully, take account. Overall, however, no severe damage is done to the light curve by achieving the first guideline. Table 16 also shows that the second guideline was reasonably successful, expecially in light of the preceding discussion. | 0.0-0.25 0.25-0.5 0.5-0.75 0.75-1.0 0.0-1 | | | | | |---|----------|--------------------------------|---|---| | 0.0-0.25 | 0.25-0.5 | 0.5-0.75 | 0.75-1.0 | 0.0-1.0 | | 0.9885 | 1.0093 | 1.0004 | 1.0005 | 0.9997 | | 0.9709 | 1.0047 | 1.0198 | 1.0075 | 1.0007 | | 0.9591 | 1.0003 | 1.0367 | 1.0037 | 1.0000 | | | 0.9885 | 0.9885 1.0093
0.9709 1.0047 | 0.9885 1.0093 1.0004 0.9709 1.0047 1.0198 | 0.9885 1.0093 1.0004 1.0005 0.9709 1.0047 1.0198 1.0075 | The eclipses are rather insensitive to any sine term adjustment since the functions are smallest here. It was noticed, however, that changes of 20% in the coefficients of the sine terms had a perceptible effect on the slant of the total eclipse. The maximum effect of the sine terms occurs at quadrature points. Close examination of the residuals near the quadratures show a much better fit of the rectified curves to unity than even Table 16 (which has already been noted as being passably good) reveals. It appears, then, that requiring the sine terms to preserve the shape of the observed total portion of the light curves favorably affects the rectification outside of the primary eclipse. The agreement in the depths of the secondary eclipses between the rectified and original data was the most difficult of the guidelines to achieve. Any adjustment of the cosine terms to achieve a reasonable fit in the secondary eclipse resulted in a deterioration of the fit outside eclipse. Examination of Figure 3 shows that only in the visual is the secondary well defined. The blue data show only a hint of the eclipse and it is invisible in the ultraviolet. Notice also that the scatter (presumably intrinsic to the system) is much greater in all colors just after 0.5P. The visibility of the eclipse makes it difficult to work with in all but visual light and even there the scatter during egress causes additional problems. Less weight was placed, therefore, upon achieving the final guideline. The difficulties presented here in achieving a workable rectification of U Cephei seems to have been minimized in previous attempts at solution. These difficulties are primarily responsible for the noticeable lack of all but preliminary solutions of the system. We have in U Cephei, however, an outstanding opportunity to gather information about the geometry of the system. The total primary eclipse is the ideal case for eclipsing binary systems. A patient approach to the solution should reap rich rewards, not only in the geometry of the system, but also in further understanding of the dynamics of these unstable close binary systems. Three solution procedures were followed in order to compare the geometrical properties of U Cephei. The Russell-Merrill solution is presented first. Following this solution are the computer approaches of Wilson and Devinney and David B. Wood. # CHAPTER V THE SOLUTIONS #### The Russell-Merrill Solutions #### Nomographic Solutions Figure 5 shows the normal points inside of primary eclipse from Table 13. It is obvious that some asymmetry exists and that this asymmetry is not simply a result of an inaccurate ephemeris, since the asymmetry increases with decreasing wavelength. This asymmetry has long been known for U Cephei. For solution purposes symmetric eclipses are required. Assuming that gas streaming effects are responsible for the lower level of light on the ingress branch, only egress was used for the Russell-Merrill solutions. Egress is presumably less affected by these perturbations and the resulting solution should be much closer to the true geometrical parameters. The previously noted difficulty with the secondary eclipses made it very difficult to get a reliable nomographic solution. From the estimated depth of secondary eclipse in the visual (0.9595), a nomographic solution was done. Solutions only exist for limb darkening coefficients greater than 0.4. This solution fit the primary eclipse rather poorly. It was discovered that a good fit to the primary eclipse could not be obtained using the observed depth line. In fact, acceptable solutions for primary eclipse could only be obtained for a secondary eclipse considerably deeper than that observed. Due to the observational scatter after 0.5P and the poorly determined eclipse in the blue and ultraviolet, less weight should, perhaps, be given to the secondary eclipse. Little information will come from the secondary eclipses and progress beyond a preliminary solution will be difficult by the Russell-Merrill approach. Some further attempt was made to restrict the area of the nomographs in which solutions lie. Since the depth line, given by, $$(1 - 1_0^{tr})/1_0^{oc}$$, has a very well determined denomiantor due to the deep total primary eclipse, any range in solutions can be ascribed to variations in the numerator. Values of $1_0^{\rm tr}$ consistent with the observed depth of secondary eclipse give depth lines 50% less than values of $1_0^{\rm tr}$ giving good fits of primary eclipse. Values for the depth line vary from 0.2 to 0.4. There is insufficient constraint here to make the nomographic solution meaningful. Perturbations in secondary eclipse are probably responsible for the unusually shallow depths. The assumption was made, therefore, that the observations do not show the expected variations due to the transit eclipse and the secondary eclipses were not used for solution purposes. An important constraint on the problem is thus removed and great care must now be taken to insure physically reasonable results. #### The ψ Solution The ψ function is given by, $$\psi = \frac{\sin^2 \phi - \sin^2 \phi}{\sin^2 \phi} (\alpha = 0.6)$$ (5-1) where subscripts refer to the value of the phase angle, ϕ , at the specified value of α , which, for an occultation eclipse, is simply the fractional light loss. Values of ϕ for α = 0.6 and α = 0.9 can be read directly from the light curve and thus ψ can be calculated for any other value of ϕ . Tables of the ψ function have been provided by J.E. Merrill (Merrill, 1950a) in terms of x (limb darkening coefficient), k (ratio of the radii), and α . It is more convenient, therefore, to choose values of ϕ at tabular values of α . Having calculated ψ for each of these phase angles, the tables are entered to determine k for some particular value of x. Table 17 shows the results of these calculations. Also given in Table 17 are $$A^{OC} = \sin^2 \phi (\alpha = 0.6)$$ $$B^{OC} = \sin^2 \phi (\alpha = 0.6) - \sin^2 \phi (\alpha = 0.9) .$$ It is clear from the mean values of k and their standard errors that the coefficient of limb darkening is a difficult Table 17 The ψ Solution Visual | | $A^{OC} = 0.065$ | 7 8 | Boc = | 0.04187 | | |-----------------|------------------|----------------|----------------|----------------|-------------| | α ^{oc} | Ψ | 2 _k | ⁴ k | 6 _k | 8 k | | 0.05 | 3.42860 | 0.5941 | 0.6115 | 0.6319 | 0.6566 | | 0.10 | 2.81238 | .5768 | .5991 | .6235 | .6527 | | 0.20 | 1.93215 | .5410 | .5671 | .5968 | .6290 | | 0.30 | 1.34707 | .5524 | .5818 | .6146 | .6511 | | 0.40 | 0.85283 | .5752 | .6076 | .6426 | .6811 | | 0.50 | 0.41043 | .6115 | .6458 | .6823 | 221 | | 0.60 | 0.0 | | | | | | 0.70 | -0.35397 | .5321 | .5684 | .6071 | .6490 | | 0.80 | -0.67122 | .4442 | .4832 | .5240 | .5686 | | 0.90 | -1.0 | | | | | | 0.95 | -1.17667 | .4580 | .5002 | .5455 | .5932 | | 0.97 | -1.26050 | .4389 | .4832 | .5309 | .5818 | | 0.985 | -1.32301 | .4649 | .5086 | .5565 | .6081 | | | Means | 0.53
± 6 | 0.56
± 6 | 0.60
± 5 | 0.64
± 5 | Table 17 (Continued) B1ue | | $A^{OC} = 0.0686$ | 09 | B ^{oc} = | 0.043689 | | |-----------------|-------------------|----------------|-------------------|----------------|-------------| | α ^{oc} | ψ . | ² k | ⁴ k | 6 _k | 8 k | | 0.05 | 3.036005 | 0.4930 | 0.5077 | 0.5247 | 0.5455 | | 0.10 | 2.493034 | .4690 | .4882 | .5097 | .5346 | | 0.20 | 1.780613 | .4568 | .4812 | .5089 | .5386 | | 0.30 | 1.286613 | .5004 | .5288 | .5607 | .5956 | | 0.40 | 0.840886 | .5577 | .5896 | .6242 | .6655 | | 0.50 | 0.405354 | .5939 | .6275 | .6645 | .7044 | | 0.60 | 0.0 | | | | | | 0.70 | -0.364472 | .6076 | .6430 | .6811 | .7219 | | 0.80 | -0.686530 | .5603 | .5960 | .6355 | .6778 | | 0.90 | -1.0 | | | | | | 0.95 | -1.177947 | .4489 | .4913 | .5370 | .5851 | | 0.97 | -1.263844 | .4473 | .4688 | .5173 | .5688 | | 0.985 | -1.332027 | .4356 | .4809 | .5308 | .5843 | | | Means | 0.51
± 6 | 0.54
± 6 | 0.57
± 7 | 0.61
± 7 | Table 17 (Continued) Ultraviolet | | $A^{OC} = 0.07068$ | 8 8 | Boc | = 0.045591 | | |-----------------|--------------------|----------------|----------------|----------------|----------------| | α ^{oc} | ψ | ² k | ⁴ k | 6 _k | ⁸ k | | 0.05 | 3.268129 | 0.5551 | 0.5714 | 0.5909 | 0.6136 | | 0.10 | 2.743888 | .5558 | .5768 | .6016 | .6290 | | 0.20 | 2.015237 | .5818 | .6090 | .6390 | .6728 | | 0.30 | 1.431369 | .6171 | .6482 | .6816 | .7191 | | 0.40 | 0.893857 | .6317 | .6644 | .7008 | .7399 | | 0.50 | 0.422534 |
.6519 | .6853 | .7223 | .7630 | | 0.60 | 0.0 | | | | | | 0.70 | -0.373223 | .6632 | .6983 | .7357 | .7760 | | 0.80 | -0.699236 | .6422 | .6761 | .7137 | .7556 | | 0.90 | -1.0 | | | | | | 0.95 | -1.162504 | .5537 | .5901 | .6314 | .6761 | | 0.97 | -1.235766 | .5456 | .5828 | .6255 | .6712 | | 0.985 | -1.311870 | .5004 | .5415 | .5870 | .6366 | | | Means | 0.59
± 5 | 0.62
± 5 | 0.66
± 6 | 0.70
± 6 | quantity to determine. Some idea of the limb darkening coefficient may be obtained by comparing the ψ solutions with another solution approach described below. Notice the trend of calculated k values in Table 17. A peak is reached in all colors midway through the eclipse branch and the smallest k values occur near the bottom of eclipse. This shows the same trend evidenced in many eclipsing systems, i.e., that the same value of the ratio of the radii cannot be applied throughout the eclipse. Superficially, this states that the observed light curve is not of the simple shape predicted by the Russell-Merrill model. It is tempting to make further conclusions, but this would not be fruitful until some of the perturbing effects are better understood. Upon calculating some sample light curves using the mean k values of Table 17, it was found that limb darkening coefficients near 0.6 fit slightly better in the visual and blue, but x values near 0.4 fit slightly better in ultraviolet. These values will act as a guide in selecting the preliminary solution in conjunction with the results of the next solution attempt. ### The Intermediate ψ Solution This approach was suggested by J.E. Merrill and is outlined in Princeton Observatory Contributions Number 26, page 59ff. The procedure is to take weighted means of $\sin^2 \phi$ for three groups of light levels taken at the top, middle, and bottom of the eclipse curve. Group I includes $\sin^2 \phi$ values corresponding to α values of 0.05, 0.10, 0.20, and 0.30 with weights 2, 2, 2, and 1, respectively. Group II uses α values of 0.50, 0.60, and 0.70 with unit weights. Group III includes α values of 0.95, 0.97, and 0.985 with weights 1, 2, and 2, respectively. The weighted means of $\sin^2 \phi$ for each group are designated M₁, M₂, and M₃, from which a value, R, can be calculated as follows, $$R = \frac{M_1 - M_2}{M_2 - M_3} .$$ Using equation (5-1) in the form, $$\psi^{\text{oc}} = (\sin^2 \phi - A^{\text{oc}})/B^{\text{oc}}$$ it is clear that, $$M_{1}[\sin^{2}\phi] = A + BM_{1}[\psi]$$, $M_{2}[\sin^{2}\phi] = A + BM_{2}[\psi]$, (5-2) $M_{3}[\sin^{2}\phi] = A + BM_{3}[\psi]$, where $M_1[\psi]$, $M_2[\psi]$, and $M_3[\psi]$ are the weighted means in ψ corresponding to the previously calculated $M_1[\sin^2\phi]$, $M_2[\sin^2\phi]$, and $M_3[\sin^2\phi]$. From equations (5-2) it follows that, $$R = \frac{M_1 \left[\psi \right] - M_2 \left[\psi \right]}{M_2 \left[\psi \right] - M_3 \left[\psi \right]} \quad .$$ Merrill has provided tables giving values of R, $M_1[\psi]$, $M_2[\psi]$, and $M_3[\psi]$ as a function of k and x for both occultation and transit eclipses. Given the value of R, inverse interpolation yields k, $M_1[\psi]$, $M_2[\psi]$, and $M_3[\psi]$. Then equations (5-2) are used to obtain values of A^{OC} and B^{OC} . Table 18 shows the results of this procedure. The usefulness of this technique is that it produces values of k which fit the entire run of the eclipse. In that sense it is probably preferable to taking means of the k values obtained in the ψ solution. Examining the results of the two methods shows that k is the same for x=0.6 in the visual. The comparisons in the blue and ultraviolet are not as good, but the differences are smaller for small values of x. #### The Adopted Solution The real test of the solution is the fit to the observations. Many of the above solutions were plotted against the observations, including some past solutions by other authors. The intermediate ψ solution given by x=0.6 seems to be the best fit in the visual. This solution was clearly preferred and an attempt was made to keep the value of k sensibly around the value for this solution (k = 0.6026) in the other two colors, without doing damage to the fit of the observations. This lead to the ψ solution given by x=0.6 for the blue, which fitted the observations quite well. The preferred solution in the ultraviolet was the intermediate ψ solution for x=0.2. This seemed clearly better than the others. The solutions seemed close enough to assume that they should be identical for wavelength independent parameters. The average value of k for all the previously mentioned $Table\ 18$ The Intermediate ψ Solution | | 0.2 | 0.4 | x
0.6 | 0.8 | |--------------------|-----------|-----------|-----------|-----------| | | | · · · | | | | Visual | | | | | | k | 0.5522 | 0.5757 | 0.6026 | 0.6335 | | $M_1[\psi]$ | 2.461235 | 2.468497 | 2.476399 | 2.485532 | | $M_2[\psi]$ | 0.012488 | 0.012228 | 0.011904 | 0.0116737 | | $M_3[\psi]$ | -1.250531 | -1.256798 | -1.254265 | -1.266061 | | B_{oc} | 0.042679 | 0.042477 | 0.042573 | 0.0421879 | | Aoc | 0.066033 | 0.066046 | 0.066059 | 0.066073 | | 31ue | | | | | | k | 0.4677 | 0.4901 | 0.5157 | 0.5455 | | $M_{1}[\psi]$ | 2.2494 | 2.25457 | 2.264007 | 2.27531 | | M ₂ [ψ] | 0.00927 | 0.00905 | 0.00885 | 0.00869 | | $M_3[\psi]$ | -1.26939 | -1.27597 | -1.28516 | -1.28630 | | Boc | 0.04399 | 0.043775 | 0.043471 | 0.04344 | | A^{OC} | 0.068797 | 0.068808 | 0.06882 | 0.068827 | | Ultraviolet | | | | | | k | 0.5556 | 0.5792 | 0.6060 | 0.6371 | | M ₁ [ψ] | 2.470583 | 2.477731 | 2.485738 | 2.494611 | | M ₂ [ψ] | 0.012625 | 0.012368 | 0.012041 | 0.011799 | | $M_3[\psi]$ | -1.243159 | -1.247021 | -1.251722 | -1.256867 | | Boc | 0.046034 | 0.045903 | 0.045744 | 0.045567 | | A^{oc} | 0.070856 | 0.070870 | 0.070887 | 0.070900 | | | | | | | "best" solutions was taken and ψ values calculated for this value of k. The A^{OC} and B^{OC} parameters were then adjusted until the internal and external tangency points agreed for all colors. This insures the same value of inclination. These new "mean" solutions were then plotted against the observations. The fits in the visual and blue remain quite good, but this approach failed for the ultraviolet. solutions listed in Table 19, then, are the "mean" solutions for the visual and blue, but the previously determined "best" solution for the ultraviolet. In Table 19, i, is the "rectified" inclination, r the fractional radius, and L the fractional light, where subscripts g and s refer to the greater and smaller stars, respectively. Also listed are the geometrical parameters when the effects of rectification are removed. Figure 5 shows the normal point intensities during primary eclipse along with the eclipse curves given by these solutions. The values of Table 19 represent a good preliminary solution to U Cephei. A procedure has been outlined (Russell and Merrill, 1952) to proceed to a refinement of the solution. Unfortunately, the procedure requires some good light values inside of secondary eclipse. As has already been noted, this cannot be done for the light curve of this epoch. The preliminary solution is, then, all that can be reliably obtained from these data. As a comparison to past solutions, Table 20 lists elements, authors, and epochs. Table 19 The Russell-Merrill Solution Parameters for the Rectified Light Curves | | × | 1 r | 8 | S | es
es | S | ×° | |-------------|--------|-------|--------|--------|----------|--------|-----| | Visual · | 0.5768 | 83.36 | 0.3278 | 0.1891 | 0.1847 | 0.8153 | 9.0 | | Blue | .5768 | 83.36 | .3278 | .1891 | .1106 | .8894 | 9.0 | | Ultraviolet | .5556 | 82.77 | .3391 | .1884 | .0576 | .9424 | 0.2 | Parameters for the Observed Light Curves | | j | a
S | a
S | bg | s q | L s | Ls | |-------------|-------|--------|--------|--------|--------|--------|--------| | Visual | 83.43 | 0.3278 | 0.1891 | 0.3243 | 0.1871 | 0.1137 | 0.8863 | | Blue | 83.43 | .3278 | .1891 | .3243 | .1871 | .0513 | .9487 | | Ultraviolet | 82.84 | .3391 | .1884 | .3358 | .1866 | .0267 | .9733 | | | | | | | | | | Figure 5. The primary eclipse is plotted in the three colors from the data in Table 13 as points. The solid curves represent the Russell-Merrill solutions given in Table 19. Table 20 Comparison of Solutions | | | ,, | | 1974 | 1974 | 1974 | |---------------------------------|-------------------|----------------------------------|-----------------------|--|---|---| | Reference | 20 | Broglia, 1959 (see Batten, 1974) | Khozov & Minaev, 1969 | Tschudovitchev, 1950;
solved by Hall & Walter, 1974 | Khozov & Minaev, 1969;
solved by Hall & Walter, 1974 | Catalona & Rodona, 1974;
solved by Hall & Walter, 1974 | | Refe | Dugan, 1920 | Broglia,
1974) | Khozov & | Tschudovi
solved by | Khozov &
solved by | Catulona
solved by | | λeff | 5500 Å | 5500 | 8100 | 4600 | 8100 | 2500 | | Ls | 0.6 0.1615 0.8385 | | | .861 | 099. | .816 | | ß | 0.1615 | | | .139 | .340 | .184 | | ×s | 9.0 | 9.0 | | 9.0 | 0.2 | 0.4 | | j x _s ^L g | 0.62 86.4 | 87.8 | 84.6 | 83.14 | 83.15 | 83.14 | | * | 0.62 | .63 | .55 | .50 | .50 | .50 | | b _S | 0.2000 0.1911 | | | .1665 | .1665 | .1665 | | a
N | | .203 | .185 | .1700 | .1723 | .1704 | | gq | 0.3082 | | | .3340 | .3341 | .3339 | | a g | 0.3225 | .325 | .337 | .3410 | .3457 | .3418 | #### The Wilson-Devinney Solution The computer solution technique of Wilson and Devinney (1971) was employed using the same normal points as the Russell-Merrill solution. The Wilson-Devinney program (hereafter called W-D) uses the Roche model described in detail by Kopal (1959). Since U Cephei is an example of an Algol type eclipsing binary and mass flow has been observed spectroscopically, the assumption was made that the secondary
component fills its Roche lobe. This assumption corresponds to mode five of the W-D program, which also couples the luminosity (L_2) and temperature (T_2) of the secondary through the Planck function. Provision has very recently been made to allow the user to employ the model atmospheres of Carbon and Gingerich (1969) for either star. This provision, however, was not available at the time of this solution. A new feature of the W-D program allows the user to specify an asynchronous rotation rate for either star. Since spectroscopic evidence indicates that the primary component of U Cephei is rotating five times synchronous, this value was used for that star while the secondary was allowed to rotate synchronously. The free parameters were divided into two sets. Set one consisted of i, the inclination; T_2 , the polar temperature of the secondary; Ω_1 , the potential of the surface of the primary; q, the mass ratio; and L_1 , the luminosity of the primary. Set two included G_1 , the gravity exponent for the primary (this is 1.00 for the von Zeipel law); G_2 , the same as \mathbf{G}_1 for the secondary; \mathbf{A}_2 , the bolometric albedo of the secondary; and \mathbf{x}_1 , the limb darkening coefficient for the primary. Each of these sets contain only one wavelength dependent parameter (\mathbf{L}_1 for set one and \mathbf{x}_1 for set two). The three colors were solved simultaneously in order to find the wavelength independent parameters which best represented all colors. The polar temperature of the primary, T_1 , was set at 13,600°K from the spectral classification of Batten (1974) and the temperature scale of Morton and Adams (1968). The B7V spectral type of the primary indicates that the atmosphere should be entirely radiative and A_1 , the bolometric albedo of the primary, was, therefore, set equal to one. The limb darkening coefficient for the secondary, x_2 , should be rather small since its atmosphere is extended out to the Roche limit. The distortions evident in secondary eclipse suggest that x_2 should be fixed to avoid spurious results and was, therefore, set equal to zero. The parameters A_2 and G_2 depend upon the shape of secondary eclipse as well and should, therefore, suffer from the same distortions. They were found, however, to converge rather quickly. The following technique was used in the solution: An initial set of parameters was chosen from previous solutions and set one was allowed to vary. The indicated corrections were made and rerun using set two as free parameters. These corrections were then used with set one and so forth until the indicated corrections were smaller than their probable errors. Another indicator of the convergence of the solution was that the sum of the squares of the residuals should continue to decline from run to run. As a check the reverse procedure was also followed, i.e., set two was used first, then set one, etc. The solutions were the same for both procedures, indicating that the global minimum had been found. Set two converged very quickly, but the parameters of set one were rather highly correlated and converged rather slowly. After set two had converged, the parameters in that set were fixed at their solution values and set one was subdivided into two less highly correlated sets. Set la included i and L_1 , while set 1b consisted of T_2 , Ω_1 , and q. The same alternating run method described above was used to achieve convergence in these parameters. Table 21 shows the results of the solution. In that table, r_{(1.2)POINT} is the radius of the star in the direction facing the other component, $r_{(1,2)BACK}$ is the radius in the direction facing away from the other component, $r_{(1,2)SIDE}$ is the radius in the orbital plane perpendicular to the line of centers, and r_{(1,2)POLE} is the radius perpendicular to the orbital plane. Figure 6 shows the solution curve plotted with the normal points for the entire light curve and Figure 7 shows the fit of the solution curve to the normal points in primary eclipse. ## The D.B. Wood Solution The computer solution technique of D.B. Wood (1972), called WINK, was used as a check on the previous solutions. Table 21 The Wilson-Devinney Solution ## Wavelength Independent Parameters | $i = 82.22$ ± 15 | $\Omega_1 = 6.911 \\ \pm 34$ | |--------------------------------|--------------------------------| | $G_1 = 0.46 \\ \pm 5$ | $\Omega_2 = 3.1429$ (computed | | $G_2 = 0.99 \\ \pm 2$ | q = 0.644
± 8 | | $T_1 = 13600$ °K (assumed) | $A_1 = 1.00 \text{ (assumed)}$ | | $T_2 = 5454^{\circ}K$ ± 13 | $A_2 = 0.41$ ± 2 | ## Wavelength Dependent Parameters | λ (Å) | L ₁ | L ₂ | x ₁ | x ₂ | |-------|----------------|----------------------|----------------|------------------| | 5500 | 0.8661
± 3 | (computed)
0.1339 | 0.350
± 34 | (assumed)
0.0 | | 4300 | 0.9348
± 1 | 0.0652 | 0.621
± 23 | 0.0 | | 3500 | 0.9713
± 1 | 0.0287 | 0.535
± 41 | 0.0 | ## Sizes of the Components | | r _{pole} | r _{point} | ^r side | r _{back} | |---------------|-------------------|--------------------|-------------------|-------------------| | primary (1) | 0.1594 | 0.1791 | 0.1776 | 0.1788 | | secondary (2) | .3198 | .4425 | .3345 | . 3665 | The normal points of Table 13 are plotted as points and the Wilson-Devinney solution of Table 21 is represented as the solid lines. Figure 6. Figure 7. Same as Figure 6 for the primary eclipse only. It models the components of binary systems as tri-axial ellipsoids. WINK allows for eccentricity of orbit, non-linear limb darkening and model atmospheres for the stars. Conversion of the solution parameters from W-D to the astrophysical space of WINK supplied the starting point for the differential corrections. The first set of free parameters used included i, T_2 , r_1 , the equatorial radius of the primary perpendicular to the line of centers, q, and QUAD MAG, the magnitude at 0.25P. This set failed to converge after six iterations, principally because the value of q was corrected from 0.6 to 1.83. The mass ratio enters the calculations through the shape of the stars rather than through the potentials as in the Roche model. As such, it is a rather poorly determined quantity for this model. The next attempt at solution used i, T_2 , r_1 , and QUAD MAG as free parameters. This run converged in three iterations but produced a partial primary eclipse, contrary to observations. The value of r_1 came from the W-D solution, which incorporated a rather large asynchronism for the primary star. This causes an equatorial bulge on the primary star. The mass ratio from the W-D solution, however, requires this star to be nearly spherical, so that using the large value of r_1 from W-D made the star too large and prohibited a total eclipse. This demonstrates that U Cephei is just marginally total, which can also be seen from the loci of solution points on the nomographs of Merrill. Reducing the initial value of r_1 to the polar radius of the W-D program again caused convergence in three iterations. The primary eclipse was total, but of much shorter duration than observed. The solution tended to enlarge the radius of primary. In all of these solutions the values of i, T_2 , and QUAD MAG were only nominally corrected by the program. Any progress in the solution beyond this stage would probably be illusory and the solution by WINK was abandoned. Some interesting conclusions can, however, be drawn. The source of distortion in shape for the tri-axial ellipsoid model is tidal forces. The primary star in U Cephei is abnormally distorted by rotation. WINK models this distortion as the influence of a massive companion. The mass ratio is, therefore, reversed in order to account for the shape of the primary. The WINK program is apparently not very useful for systems of asynchronously rotating components. More importantly for U Cephei, however, is that the effect of the asynchronous rotation is visible in the light curve. # CHAPTER VI THE PERIOD STUDY #### The Current Ephemeris The times of primary minima were determined by bisection of the lower portions of primary eclipse. Inspection of the light curves in this portion of the eclipse reveals that any asymmetry is minimal. On those nights when the entire eclipse was not observed, the eclipse curve near the bottom was superposed with other minima close in time. The depth of the eclipse is sufficiently great that only small time errors are introduced in this way. The times of minima used for the determination of the ephemeris are shown in Table 22. ${\small \textbf{Table 22}}$ Observed Times of Minima Used for Ephemeris Determination | Heliocentric Julian Date | 0-C | |--------------------------|---------------------| | 244 2352.6933 | -0 ^d 007 | | 2362.6699 | 002 | | 2367.6598 | .002 | | 2509.7623 | 001 | | 2524.7225 | .001 | | 2646.8816 | 067 | | 2873.7393 | 012 | | 2903.6698 | 001 | Several techniques were used to calculate the current ephemeris. - 1) A plot of the residuals (O-C) for the times of minima listed in Table 22 from the light elements given by Tchudovitchev (1939) yields a sloped line from which a new period can be found. - A least squares fit of all photoelectric times of minima in the interval of my observations (Rafert, 1977) gives T_O, the initial epoch and P, the period. - 3) A similar least squares fit to all times of minima (including visual determinations) in the same interval (Rafert, 1977) yields a third ephemeris. The mean of T_0 and P for these three techniques gives the current light elements as, Min J D = $$2442352.6999 + 2.493071 \cdot E$$, where E is the cycle count from the initial epoch. This ephemeris was used to calculate the phases of Table 13 and the O-C's of Table 22. # The O-C Diagram The data and computer programs used in the following sections are due to Rafert (1977). Figure 8a shows the residuals (O-C's) of the times of minima from the light
elements $2407890.2957 + 2.4929005 \cdot E$ given by Tchudovitchev (1939). A parabolic regression of this data weighted to the Figure 8. The observed minus the computed times of minima using the ephemeris 2407890.2957 + 244929005 are shown in part (a) vs. the cycle count. Part (b) shows the residuals from the solid line parabolic fit through the data of part (a). precision of each determination yields, MIN J D = 2407890.421 + $$2\frac{d}{4}$$ 4928089 • E + $(8.68 \times 10^{-9})E^2$, ± 11 ± 28 ± 17 which is shown as the solid line in Figure 8a. The residuals from this parabolic fit are shown in Figure 8b. Hall (1975) has suggested that many small amplitude parabolas superpose upon the major parabola, which may indicate enhanced mass transfer. Alternatively, the residual curve (Figure 8b) may indicate a sine term. Rafert (1977) has shown, however, that if a sine term is present, it does not remain phase coherent during the run of the data. While either of these alternatives has its physical cause, neither seems well enough established to be of use in predicting future behavior. The recent residuals from the parabolic ephemeris are quite small and it appears as if this ephemeris continues to predict the times of minima very well with only minor amplitude and time deviations. One important astrophysical quantity can be derived from the parabolic ephemeris above. If conservation of mass and steady mass transfer are assumed (both of which are suspect in view of the history of U Cephei), then one can deduce the mass transfer rate. Let $$\frac{d}{d} \frac{T}{E} = P \tag{6-1}$$ where T is the time of minimum. Integrating this expression yields the ephemeris, $$T = \int P \cdot dE \qquad (6-2)$$ The assumption of a steady mass transfer rate can be written as $$P = P_0 + \frac{dP}{dE} \cdot E .$$ Substituting into equation (6-2) and integrating yields, $$T = T_0 + P_0 \cdot E + \frac{1}{2} \frac{dP}{dE} E^2$$ (6-3) We may write dP/dE as, $$\frac{dP}{dE} = \frac{dP}{dt} \cdot \frac{dt}{dE}$$ (6-4) and substitute equations (6-1) and (6-4) into (6-3) to obtain $$T = T_0 + P_0 \cdot E + (\frac{1}{2} P \frac{dP}{dt}) E^2$$ (6-5) This is the form of the parabolic ephemeris given above. If we denote the quantity in parentheses in equation (6-5) by A, then for a unit time interval, $$\frac{\Delta P}{P} = \frac{2A}{P^2} \qquad (6-6)$$ If an amount of matter $\Delta m > 0$ is transferred from a less to a more massive star (which is the conclusion of the spectroscopic data for U Cephei), then the resultant change of period is $$\frac{\Delta P}{P} = \frac{3(2\mu - 1)\Delta m}{\mu(1 - \mu)m} ,$$ where m is the sum of the masses and μ = m₁/m, m₁ being the mass of the primary star. Using equation (6-6) and the parameters of the parabolic ephemeris, $$\Delta P/P = 2.79 \times 10^{-9}$$. Using the masses derived by Batten (1974) of m_1 = 4.2 ± 0.6 M_{\odot} and m_2 = 2.8 ± 0.5 M_{\odot} , one obtains, $$\Delta m = 7.81 \times 10^{-9} M_{\odot}/\text{cycle}$$ = 1.14 x 10⁻⁶ M_{\oldsymbol{o}}/year The residuals shown in Figure 8b make it apparent that the times of minima do not strictly show the parabolic shape expected for this steady mass transfer rate. Large deviations from the mean mass transfer rate may be expected. These deviations may have several causes. - The hydrodynamical model of Prendergast and Taam (1974) shows that a small percentage of material is lost from the system. This loss not only deprives the system of that mass, but also removes the angular momentum of that mass. The loss of angular momentum changes the period. - 2) The mass may be transferred rather sporadically to give the overall mean transfer rate. The spectroscopic work of Batten (1974) supports this conclusion. After an extensive search of many spectra of U Cephei, Batten was only rarely able to report emission in the Balmer lines of hydrogen. Such emission lines show radial velocities indicative of a gaseous stream toward the primary star. The events reported in this dissertation, however, were accompanied by the appearance of a very strong emission in the Balmer lines as well as lines of other elements. This suggests that the mass transfer rate was especially great at these times. It is unlikely that these events are unique which suggests that mass transfer in U Cephei is rather sporadic. 3) The sustained high rate of rotation of the primary star is presumably a direct cause of the mass transfer. Particle trajectory calculations show that the transferred mass is quite effective in increasing the rotation of the primary star. Angular momentum from the transferred mass which goes into rotational angular momentum behaves, however, just as if it had been lost to the system in so far as period changes are concerned. Wilson and Stothers (1975) give an expression to estimate the ratio of the period change due to this so-called non-conservation of angular momentum (NCJ) to the period change due to mass transfer (MT) given above. If k is a factor between zero and unity which depends on the latitude at which the gas stream hits the surface of the primary and RM is the ratio of the masses in the sense m_1/m_2 , then, $$\frac{dP_{NCJ}}{dP_{MT}} = 0.69 \text{ k} \left[\frac{(1 + RM)^{1/3} RM^{0.77}}{(1 - RM)} \frac{(m_2)^{0.11}}{p^{1/3}} \right]$$ If we adopt the parameters $m_2 = 2.8 \text{ M}_{\odot}$, P = 2.4928089, k = 0.8, and RM = 1.55, then, $$(dP/dt)_{NCJ (max)} = -1.58 (dP/dt)_{MT}$$ (6-7) In the real system the orbital angular momentum of the transferred mass is not completely converted into rotational angular momentum. Mechanisms may also be present (see Chapter VII) to cause the gas stream to strike the surface of the primary at higher latitudes, thereby reducing k. Equation (6-7) indicates, however, that these two causes of period changes are competing and may be comparable. The neglect of NCJ will yield a mass transfer rate which is a lower limit to the true rate. The fit of the least squares parabola to the data in Figure 8a may lead one to question the choice of a parabola as the functional form. In fact, two straight line segments joining at about 9000 cycles (1940) may yield residuals at least as small as the parabolic residuals. # Evidence for Recent Period Changes The more recent data of Figure 8a were reanalyzed in an attempt to find the best ephemeris for accurate predictions of future times of minima. Figure 9a shows the times of minima from November 1965, until June 1976, using the same light elements as Figure 8a. Small changes in slope appear Figure 9. Part (a) shows the O-C diagram for the times of minima from November 1965, until June 1976, using the same ephemeris as Figure 8. The three straight line segments represent the least squares fit of these segments, the residuals of which are shown in part (b). near cycles 13278 (February 1971) and 13730 (March 1974). The data were divided into three sets at these points and separate linear regressions produced the solid lines drawn through the data. The resulting light elements are listed below. Set 1 Min JD = $$2439086.7724 + 2.4930634 \cdot E$$ Set 2 Min JD = $2440991.4802 + 2.4930765 \cdot E$ $\pm 5 + 28$ Set 3 Min JD = $2442118.3508 + 2.493058 \cdot E$ $\pm 19 + 2.493058 \cdot E$ The errors quoted are standard errors. If one accepts these results as significant, the period changes amount to 1.3×10^{-5} day (1.1) between sets 1 and 2 and -1.85 x 10^{-5} day (-1.6) between sets 2 and 3. Olson (1977) has used "11 essentially undisturbed eclipses" by Hall and Keel, R. Crawford, Scarfe, and Olson between November 1974, and November 1976, to calculate the light elements, Min JD = $$2442377.6242 + 2.4930709 \cdot E$$. This ephemeris has the advantage of being based on photo-electric observations, but includes far fewer observations than my set 3. The differences between the periods of my set 3 and Olson's or of my current ephemeris and Olson's are not significant in view of the errors of each determination. If Olson's values are used, then the period change between sets 2 and 3 becomes -9.1×10^{-6} day or -0.79. If sets 2 and 3 are combined and a linear regression performed, the mean ephemeris is, Set 2 and 3 Min JD = $$2440991.4811 + 2.4930699 \cdot E$$. This ephemeris compared to Olson's indicates that the period has not changed significantly since February 1971. In fact, if only the photoelectric observations are considered, the noted period change about March 1974, is difficult to see. This is not to say that the visually determined times of minima are to be ignored. The accuracy of photoelectric observations may, in fact, be a handicap in this case. The previously mentioned changes in shape of the primary eclipse can make an accurate determination of the time of minimum difficult. The rather limited sample of photoelectric times of minima may bias the sample by reflecting these types of errors. The great number of visual determinations, while individually not as accurate, may, en masse, provide a better determination of the ephemeris. The sudden changes of period noted above may be an indication of sudden mass transfer. If such is the case, a major event may have occurred prior to March 1974. One must, however, question why no such sudden period change has occurred to signal the events of the summer of 1974, and the fall of 1975. One possible explanation is that the time base of the observations since these events is not sufficiently long for a change to be noticed. Alternatively, the changes of period produced by mass transferred in these events may have been cancelled by changes of period produced by the orbital angular momentum of this mass being temporarily converted into rotational angular momentum of the primary star. # CHAPTER VII THE MODEL #### Introduction The purpose of this model will be to test the effect of abnormal surface brightness distributions on the residual light in eclipse. It would be convenient if an analytical solution
could be found. Analytic forms for the light changes during eclipse on stars with normal surface brightness distributions (i.e., fractional linear limb darkening accounts for the brightness distribution) have been given by Tsesevich (1973). Unfortunately, these integrals cannot be solved in closed form since they involve elliptic functions. Solution of the eclipse integrals for abnormal brightness distributions is still more difficult. A numerical procedure was, therefore, employed to solve for the eclipse curves. Before beginning a discussion of how the surface brightness distribution was constructed, it would be instructive to examine the residuals from the solution in primary eclipse given in Figures 13 to 25. The successful model must deal with the following observed facts. - For most of the observed eclipses, the residual light was in excess of the solution. - 2) The variation of the residuals throughout the eclipse seemed to be smooth. - 3) On nights of high photometric activity (during major outbursts) the variation of the excess seemed to display the same dual-peaked type of profile. Nights of rather low activity seemed to vary in a less regular manner. - 4) During major activity the excess disappeared at or near second contact. The excess drops to zero before first and fourth contacts. - 5) The peaks of the excess before and after totality on 10 November and 15 November 1974 (see Figures 15-18) show a slow rise, rapid decline before totality and a rapid rise, slow decline after totality. The following conclusions and assumptions can be made incorporating these facts. - 1) The observations were normalized using the same intensity as unity, regardless of whether the observations were used in the formation of normal points for the solution. This suggests that positive residuals represent a surplus of light and negative residuals a deficiency of light from the predictions of the Russell model. This apparently simple conclusion determines the normalization of the theoretical model if it is to represent the observations. - 2) The apparent smoothness of the variation of the excess light indicates that one extended source is responsible. 3) This source of the excess must originate on the primary star since it tends to disappear during totality. The geometry of the solutions indicate that the contact points fall in the polar regions of the primary (the latitude on the primary of second and third contacts is 54.78). Since the excess light falls to near zero at second contact and begins anew near third contact, one suspects that the source of the excess is in the polar regions of primary. This assumption does not exclude other possibilities and other positions of the source will be tested. The decline of the excess to zero before first and fourth contacts indicates that the source is not visible at these times. ## Constructing the Test Grid The loss of light during eclipse can be modeled by summing the contributions from a grid of test points representing areas on the eclipsed star. The eclipsing star plays no role other than adding its luminosity (L₂) to the total light and acting as an occulting disk. The eclipsing star should present a nearly circular cross-section during primary eclipse and no detectable ellipsoidal type light variations should result. Additionally, in the case of U Cephei, the secondary star contributes relatively little to the total light and small variations in its light will be unimportant. The eclipsed star is modeled as circular and is eclipsed by a circular disk moving in a circular orbit. The inclination of the system is taken into account as is any desired degree of limb darkening on the eclipsed star. All computations are projected onto the plane of the sky. The coordinate system used for the computations is on the plane of the sky. The x-axis is in the line of sight, the y-axis connects the line of centers of the two stars at quadratures, and the z-axis is perpendicular to the y-axis in the plane of the sky. Figure 10 diagrams the coordinate system and shows the primary star for perspective. Notice that the north pole of the primary star is tilted toward the observer by the compliment of the inclination angle and that this pole will remain fixed on the primary star as it is projected on the sky throughout the orbit. A test grid was established on the primary star using test points to represent equal areas on the surface of the star. These test points are then projected onto the y-z plane. The grid is built up in concentric rings about the projection onto the sky of the sub-earth point (the origin of coordinates). Let there be NP test points representing NP equal areas on the visible hemisphere of the star. Since we see only one hemisphere, then each equal area must be, $$A = 2\pi r_1^2/NP \quad ,$$ where \mathbf{r}_1 is the fractional radius of the primary star. The first of these areas will cover the origin. This is the surface area of a spherical cap on the x-axis. This spherical Figure 10. The geometry of the model and the source regions. Part (a) shows the coordinate system used to construct the test grid. The test points lie on the sphere and are given by angles β , measured radially from the sub-earth point, and α , measured counterclockwise from the +z axis. Part (b) shows a typical source region as constructed in the model. This diagram is for 0.0P so that the physical interpretation of l1 and l2 can be shown. The projected equator of the star is drawn as a dotted curve and ω represents the direction of rotation. cap has surface area, $$A_{p} = 2\pi r_{1}h \quad ,$$ where h is the extent of this cap on the x-axis and is given by, $$h = r_1(1 - \cos \beta_p) .$$ β is the radial angular measure from the sub-earth point to any point on the star and β_p is the extent in β of this spherical cap. Thus, $$A_{p} = 2\pi r_{1}^{2}(1 - \cos \beta_{p})$$, and we would like $A_{D} = A$. This constraint gives β_{D} as $$1 - \frac{1}{NP} = \cos \beta_{p}$$ (7-1) The remaining range of β is $\pi/2$ - β_p and we now divide this remaining range into n concentric rings of equal angular extent, $\Delta\beta$. The test points will fall in the middle of each ring and the last ring of test points will be on the limb. This requires $$\Delta\beta = \frac{\frac{\pi}{2} - \beta_p - \frac{\Delta\beta}{2}}{n},$$ or $$\Delta \beta = \frac{\pi - 2\beta p}{2p + 1} \qquad (7-2)$$ The angles, β , at which the test points will fall are given by, $$\beta = \beta_p + (2m - 1) \frac{\Delta \beta}{2}$$ (m = 1, 2, 3, ..., n + 1) . (7-3) If the grid areas, A, are small enough, they may be expressed as elemental surface areas of the sphere or, $$A = r_1^2 \sin\beta \Delta \alpha \Delta \beta \qquad ,$$ where α is measured clockwise around a ring of test points beginning at the +z-axis. Setting the two expressions for A equal gives $\Delta\alpha$ as $$\Delta\alpha = \frac{2\pi}{(NP)\Delta\beta \sin\beta}$$ $\Delta\beta$ and β are given by equations (7-2) and (7-3), respectively. The symmetry of the test grid requires the calculation of positions for test points in one quadrant of the visible hemisphere only. The complete grid is then obtained by mirroring this quadrant throughout the entire hemisphere. The longitudinal angle, α , need only run until $\pi/2$ for the calculation of positions in this quadrant. It would be coincidental if an integer number of segments, $\Delta\alpha$, occupied a ring in the quadrant of interest. Test points representing differential areas, $\Delta\alpha$ by $\Delta\beta$, are given unit weight, whereas the fractional area remaining in the quadrant is given weight p, where $$p = \frac{\pi}{2\Delta\alpha} - INT \left(\frac{\pi}{2\Delta\alpha}\right)$$ and INT represents the integer part of the quantity in parentheses. Thus the angle, α , for each test point is given by $$\alpha = (m-1)\Delta\alpha$$ $(m=1, 2, 3, ..., INT $(\frac{\pi}{2\Delta\alpha})$) (7-4a)$ and for the final test point on each ring in the quadrant by, $$\alpha_{\mathbf{f}} = \frac{1}{2} (\pi - p\Delta\alpha)$$ (7-4b) The test points given by equations (7-3) and (7-4) must now be projected onto the y-z plane. The y and z coordinates of each test point are, $$y = r_1 \sin \beta \sin \alpha$$ $z = r_1 \sin \beta \cos \alpha$. The unit normal intensity of each test point must be modified by the foreshortening angle, γ , given by, $$cos\gamma = cos\beta$$ ## The Progression of the Eclipse The programmer is free to test the level of light throughout eclipse at any specified interval of phase angle given in degrees. The first such level corresponds to the first phase angle outside of external tangency, $\phi_{\rm e}$, where, $$\sin^2 \phi_e = \frac{(r_1 + r_2)^2 - \cos^2 i}{\sin^2 i}$$ and \mathbf{r}_2 is the fractional radius of the secondary star, and i is the inclination of the orbit. This level represents the full light of the eclipsed star. The contributions of all the test points for a normal surface brightness distribution are used as a normalizing factor for all other light levels. Test points are considered to be eclipsed if the distance from the point to the center of the eclipsing star is less than r_2 . The center of the eclipsing star describes an ellipse on the sky as the orbit progresses. At any phase angle, ϕ , the y-z coordinates of this center are, $$y_c = -\sin\phi$$ $$z_c = -\cos\phi \cos i \quad .$$ At present the major source of error in the procedure occurs by neglecting partially eclipsed test areas. If a test point is uneclipsed, it is entered into the summation of intensities given by, $$I'(\phi) = \sum_{i} (1 - x + x \cos \gamma_{i}) \cos \gamma_{i} w_{i}$$ (7-5) In equation (7-5) x is the limb darkening coefficient and w_i the weighting factor for each test area (either one or p). The summation extends over all uneclipsed test points. The cosy factor outside the parentheses
accounts for the diminishing size of the test areas as the limb of the star is approached. For a test grid of 4000 points, this procedure reproduces the light levels of the Russell-Merrill method to \pm 0.0005, standard error. If L_{norm} is the result of equation (7-5) for the first point outside of eclipse, then the other light levels are normalized by, $$I(\phi) = \frac{I'(\phi) L_1}{L_{norm}} + L_2 ,$$ where \mathbf{L}_1 and \mathbf{L}_2 stand for the lights of the primary and secondary stars, respectively. ## The Geometry of the Source Region In view of the above considerations, a geometry of the source of the excess light can be proposed. To retain sufficient choice in the location of the source, it can be modeled as either a band centered on the equator or as polar sections (hereafter called the polar source regions). Since inclination is considered in the model, the latitudinal limits of the source (hereafter called the north or south limit) are small circles on the star which become ellipses projected onto the sky. The equatorial band will lie between these limits, whereas the polar source regions lie northward and southward of these limits. If θ is the angle above or below the equator of these limits, the centers of the projected ellipses lie at, $$y_{1c} = 0$$ $$z_{1c} = \pm r_B \sin\theta .$$ These will be similar ellipses of semi-major axes along the y-axis of ${\bf r}_1 \cos\theta$ and semi-minor axes along the z-axis of ${\bf r}_1 \cos\theta$ cos i. The functional form of these ellipses can then be written as, $$\frac{y^2}{r_1^2 \cos^2 \theta} + \frac{(z \pm r_1 \sin \theta)^2}{r_1^2 \cos^2 \theta \cos^2 i} = 1$$ The lower half of each ellipse is on the visible hemisphere, so that, $$z_{\text{north}} = -\cos i \sqrt{r_1^2 \cos^2 \theta - y^2} + r_1 \sin \theta$$ $$z_{\text{south}} = -\cos i \sqrt{r_1^2 \cos^2 \theta - y^2} - r_1 \sin \theta , \quad (7-6)$$ where z_{north} and z_{south} are the corresponding z values on the north and south limits for a given value of y. The argument of the square roots will be negative for y-values whose absolute values exceed the semi-major axis. The y-coordinate of each test point on the star is inserted into equations (7-6) to determine the latitudinal limits. The z-coordinate of each test point is then compared to the computed z_{north} and z_{south} for possible inclusion in the desired source region. Those test points meeting the latitudinal condition are then tested in longitude for membership in the source region. The longitudinal limits (hereafter called right and left limits) represent great circles on the star. In order to simplify the calculations, these circles intersect on the z-axis at the projected limb of the star. These intersections would be the poles of the star for an inclination of 90°. In general, one would like to use great circles intersecting at the true poles of the star. The projection of these circles onto the sky, however, yield functional forms of degree four. The simplified forms that were used confine the use of the model to inclinations close to 90°. The great circles used in the calculations become ellipses when projected onto the sky. These ellipses will be centered on the origin with a semi-major axis of \mathbf{r}_1 along the z-axis. The semi-minor axis may be determined knowing the coordinates of a point on the ellipse and solving for b in, $$\frac{z^2}{r_1^2} + \frac{y^2}{b^2} = 1 . (7-7)$$ We would like the source to rotate with the star (either synchronously with the orbital rate or at any specified value). The left and right limits can then be given as angular deviations (l_1 and l_2) from the z-axis at 0.0P. The coordinates of the intersection of the line of centers with the equator of the star can be used to solve equation (7-7) for b. These are, $$y_{0c} = -r_1 \sin \phi$$ $$z_{0c} = -r_1 \cos \phi \cos i ,$$ where ϕ is the phase angle. This point will be on the z-axis at 0.0P. The intersections of the desired ellipses with the equator are then, $$y_{2c} = -r_1 \sin (\phi + l_j)$$ $z_{2c} = -r_1 \cos (\phi + l_j) \cos i (j = 1, 2)$. Solving (7-7) for b yields, $$b^{2} = \frac{r_{1}^{2} \sin^{2}(\phi + 1_{j})}{1 - \cos^{2}(\phi + 1_{j}) \cos^{2}i} \qquad (j = 1, 2) \qquad .$$ Now (7-7) can be used as a condition on y for test points that meet the condition in equations (7-6). The y condition is, $$y_{L,R} = \pm \sqrt{\frac{(r_1^2 - z^2) \sin^2 (\phi + 1_j)}{1 - \cos^2 (\phi + 1_j) \cos^2 i}}$$ (j = 1,2). (7-8) Care must be taken to resolve the sign of $y_{L,R}$ for each phase angle. Should one of the ellipse segments fall on the back of the star for a particular phase angle the appropriate limb of the star is used for that limit. The greater of 1_1 and 1_2 corresponds to the left limit. Those test grid points lying within the limits given by (7-8) and meeting the desired latitudinal limits of (7-6) are within the source region of interest. These points are entered into the summation of intensity (7-5) with the coefficient of limb darkening equal to one (in lieu of some better assumption) and a multiplying factor I_s , i.e., $$I'_{s}(\phi) = \sum_{k} I_{s} w_{k} \cos^{2} \gamma_{k} . \qquad (7-9)$$ The weights, \mathbf{w}_k , have the same meaning as in (7-5) and the summation extends over all test points in the visible source region. The constant \mathbf{I}_s is the ratio of the point intensity normal to the star's surface in the source region to that elsewhere on the star. It enters the summation in a natural way and can easily be converted to a temperature excess (or deficiency) in the source region by, $$\Delta T = T_1 (I_s)^{\frac{1}{4}} - T_1 , \qquad (7-10)$$ where T_1 is the temperature of the primary star and Planck's law is assumed. Equation (7-5), for test points outside the source region, and equation (7-9), for test points in the source region, together give the intensity of the star with an abnormal surface brightness distribution. This intensity is normalized in the same way as the normally bright model. The user may, in addition, place a shell of attenuating material about the equatorial regions when the source region is a polar segment. This is accomplished by supplying a positive, non-zero value for τ , the optical depth. The effective optical depth for any test point is given by, $$τ_e % τ/cosγ$$, and equation (7-5) is then modified by the multiplying factor $e^{-\tau}e$. The list of input parameters reads as follows: - i, the inclination of the orbit. The rotational axis of the primary is assumed perpendicular to the orbital plane; - \mathbf{r}_{1} , the fractional radius of the primary star; - r2, the fractional radius of the secondary star; - L₁, the fractional light of the primary; - L_2 , the fractional light of the secondary $(L_1 + L_2 = 1)$; - I_s , the intensity ratio of the source to the normal star; - θ , the latitudinal extent of the source above and below the equator of primary; - NP, the number of test grid points on the visible hemisphere of primary; - n, the number of concentric rings of test points on primary; - INT ϕ , the phase angle interval (in degrees) at which the light levels are computed; - x_1 , the limb darkening coefficient of the primary; - τ, the optical depth of the attenuating cloud; - 1₁, the longitudinal deviation (in degrees) of the left hand limit of the source from the y-axis at mid-eclipse; - 12, same as 1, for the right hand limit; - MODE, 1 for a polar segment source, 2 for an equatorial band. The flexibility of the model allows one to test a great many theoretical situations, such as: - any type of primary eclipse. Notice that by exchanging the role of primary and secondary, the same model can also be used to test abnormal brightness distributions on the secondary star during secondary eclipse; - 2) hot or cold (I_S < 1) source regions in the polar regions of the primary; - 3) hot or cold source regions on the equator of primary; - 4) an attenuating cloud about the equator either in combination with a polar source region or by itself (set $I_c = 1$); - 5) a polar source region rotating synchronously with the primary star rather than synchronously with the orbit. This was felt to be non-physical for a source region on the equator, presumably caused by infalling material from the secondary star. At present this is a change in a source statement in the program, but it may become an input parameter if sufficient usefulness is demonstrated. Notice that the rate of asynchronism of the primary must be its synodic period with the line of centers rather than its spectroscopically determined sidereal period. Residuals from the model with a normal surface brightness distribution are formed which should correspond to the residuals of the observations from the Russell-Merrill solution. Figures 11 and 12 show some residual curves computed for the situations given above. One piece of astrophysical information is also given by the model. Assuming that a hot source region is formed by infalling material heating the surface, a mean velocity of this material can be calculated by, $$\overline{v} = \sqrt{\frac{3 \overline{k} \Delta T}{m}}$$, where k is Boltzmann's constant and m is the mass of a particle. Most of this material will be hydrogen and thus m is the mass of a proton. The mean velocity does not account for the efficiency of the supposed shock heating and assumes a Maxwellian velocity distribution for the infalling material. As such, this mean velocity probably represents a lower limit. ## Fitting the Model to the Observations The first set of models tried to fit the observations using previous suggestions for the location of the source Sample residual profiles produced by the model. The dashed line segments indicate second and third contacts. Figure 11. First and fourth contacts fall at phases 0.9154 and 0.0846, respectively, and have not been drawn. Part (a) represents the Main Stream
Hot Spot (synchronous hot equatorial source). Part (b) is Olson's model (synchronous cold equatorial source). Parts (c) and (d) represent the synchronous hot and cold polar sources, respectively. The ordinates are arbitrary, but the proper sign and zero point have been given. region. Figure 11a corresponds to an equatorial band at the impact location of the main gas stream of particle trajectory models. The location of this source cannot be varied greatly and must rotate synchronously with the orbit. Such a model has severe difficultie: accounting for the sudden disappearance and reappearance of the excess light at second and third contacts. The source region remains eclipsed for a large range of the primary eclipse. The excess light is also approaching maximum at first and fourth contacts, contrary to observation. A recent model by Olson (1977) found that dark regions of rather large extent must exist on the equator of the primary to account for substantial dips in the light curve around phases 0.2P and 0.6P. My observations clearly show part of the dip at 0.6P on 12 October 1975, and may also show the dip at 0.2P (see Chapter IV). Figure 11b shows the result of my model for the dark region causing the dip at 0.2P. The other dark region suggested by Olson is not visible during primary eclipse. This model shows the same difficulty as the main gas stream hot spot model. Additionally, the residuals are negative. It may be that such dark regions were not evident during my observations of primary eclipse. At this point attention was turned toward polar source regions to explain the observations. The previously mentioned behavior of the excess light near the contact points put severe constraints on the possible longitudinal extent of the source region. The return of the residuals to zero before first and fourth contacts suggests that the source cannot be visible at these times. The source region cannot, therefore, rotate synchronously with the orbit, since the phase range of eclipse is not sufficient to turn the source through the visible hemisphere. The spectroscopically observed rotation rate of the primary star is five times the synchronous orbital rate. The synodic period of rotation relative to the line of centers of four times synchronous is then observed for any fixed point on the primary star. The polar source need not rotate synchronously with the orbit as the equatorial source should. The assumption of the source showing the rotation rate of the star is not only a physically reasonable assumption, but probably the best way to model such a polar source. Examples of the residuals derived from an asynchronously rotating polar source are shown in Figures 12a and 12b. The procedure for fitting the observed residuals was one of trial-and-error. The number of free parameters in the model (I_s , θ , τ , I_1 , I_2 , as well as MODE, and the rotation rate) would seem prohibitively large to expect unique solutions. Certain of the free parameters, however, are uniquely correlated to observed features of the excess light. From the previous discussion it would seem that the most productive assumption for residuals like those observed on 10 November 1974 (see Figure 15) would be a polar hot source rotating with the primary star. This fixed MODE as one and also the rotation rate. For this source it was discovered that the peak in the observed residuals fixed θ to within three degrees. Same as Figure 11. Part (a) and (b) represent the asynchronous polar hot and cold source, respectively. Part (c) is the profile for an attenuating equatorial cloud with an asynchronous polar hot source. Part (d) represents the attenuating cloud alone. Figure 12. The ratio of the heights of the peaks during ingress and egress determine the difference $\mathbf{1}_2$ - $\mathbf{1}_1$. The rise of the ingress peak determines $\mathbf{1}_1$ and the decline of the egress peak fixes $\mathbf{1}_2$. Once these parameters have been estimated, the height of the peaks determines \mathbf{I}_s . The use of the optical depth, τ , is more poorly correlated to the observations, If, however, one assumes that only one source is responsible for the residual light, the residual profiles similar to 4 April 1976 (see Figure 22) may be modeled by the use of τ . Any positive non-zero value of τ will result in negative residuals. Nights which show positive residuals were then modeled using zero for τ . It appears then that rather unique solutions can be found for any particular night and it is hoped that the night to night variations can be modeled by small changes in the parameters. Table 23 shows the "best" fits for the observed eclipses. Plots of these models with the corresponding observations are given in Figures 13-25. No attempt was made to model ultraviolet observations for two reasons. The scatter in the ultraviolet observations is greater than in the other two colors. Inspection of Table 23 shows that eclipses that were observed in all three colors also occurred during periods of relatively low activity, with the exception of 15 October 1975. The effects that the model attempts to explain are very small at these times. As is the case with all models that attempt to account for natural phenomena, this model also has limits of applicability, beyond which the prudent Table 23 The Model Parameters for the Observed Eclipses | Date | Color | Is | θ | 11 | 12 | τ | ΔT(°K) | \overline{v} (km/s) | |-----------|-------|-------|--------|-------|---------|--------|---------|-----------------------| | 10/31/74 | V | 9.0 | 65° | 45° | - 45° | 0.00 | 9956 | 15.7 | | | В | No at | tempt | to m | odel | large | scatter | | | 11/10/74 | V | 27.0 | 70° | 45° | -55° | 0.00 | 17401 | 20.8 | | | В | 16.0 | 67 | 40 | - 55 | 0.01 | 13600 | 18.4 | | 11/15/74 | V | 10.0 | 65 | 55 | - 40 | 0.00 | 10585 | 16.2 | | | В | 6.0 | 63 | 55 | - 50 | 0.00 | 7685 | 13.8 | | 04/06/75 | V | 9.0 | 65 | 45 | - 45 | 0.00 | 9956 | 15.7 | | | В | No at | tempt | to m | odel | large | scatter | | | *04/21/75 | V | 1.0 | 30° | | | 0.10 | | | | | В | Assum | ed the | e sam | e as vi | sua1 | | | | *08/21/75 | V | 1.0 | 30° | | | 0.10 | | | | | В | Assum | ed the | e sam | e as vi | sua1 | | | | 09/25/75 | V | No at | tempt | to m | odel | insuf | ficient | data | | | В | No at | tempt | to m | odel | insuf | ficient | data | | *10/15/75 | V | No at | tempt | to m | odel | insuf | ficient | data | | | В | No at | tempt | to m | ode1 | insuf | ficient | data | | *04/04/76 | V | 15.0 | 62° | 15° | -75° | 0.09 | 13165 | 18.1 | | | В | 11.0 | 60 | 15 | - 75 | 0.09 | 11168 | 16.6 | | *05/04/76 | V | (5.5) | (21) | (50) | (-45) | (0.07) | (7227) | (13.4) | | | В | (5.0) | (21) | (55) | (-50) | (0.15) | (6737) | (12.9) | | *05/19/76 | V | (5.5) | (21) | (50) | (-45) | (0.07) | (7227) | (13.4) | | | В | (5.0) | (21) | (55) | (-50) | (0.15) | (6737) | (12.9) | (Asterisks denote nights where ultraviolet data are available.) investigator dare not go. Observations of finite accuracy must not be modeled below the ability of the instrument to detect the variation. It is for these reasons that a complete set of graphs is provided for the visual and blue observations of primary eclipse so that the reader may decide whether the results of Table 23 to indeed match the trends of the observations. One further note of explanation seems required. Those eclipses that have been modeled with non-zero values of τ probably represent an underestimate of the optical depth. The obscuring cloud responsible for the optical depth was assumed to cover the entire equatorial region from -0 to 0. It is likely that such a simplifying assumption is not the case, but rather that such a cloud is of less latitudinal extent and that τ may vary across the star's surface. Eclipses which required non-zero values of τ , however, do indicate that some obscuring cloud is necessary to fit the observations. The nights of 31 October 1974, and 6 April 1975, seem to display the same type of behavior in the visual and, therefore are plotted together on Figure 13. The parameters are, however, not definitive for these nights, since only the ingress branch was observed. Particularly affected will be the values of I_s , I_1 , and I_2 . The night of 10 November 1974, showed the highest level of activity (see Figures 15 and 16). The success of the model in fitting the rising branch of the ingress peak and the declining branch of the egress peak is particularly encouraging. versus the phase in primary eclipse for the nights of 31 October 1974, and 6 April 1975, in the visual band. Only ingress is shown here. The solid line represents the results of the model for the parameters of Table 23. Since the residuals for the model must fall to zero at second and third contacts, these contact points will be obvious in Figures 13 through 25 and have not been indicated. First and fourth contacts occur at phases Plot of the residuals from the Russell-Merrill solution Figure 13. 0.9154 and 0.0846. Same as Figure 13 for the night of 31 October 1974, in the blue band. No model was attempted. Figure 14. Same as Figure 13 for the night of 10 November 1974, in the visual band. Figure 15. Same as Figure 13 for the night of 10 November 1974, in the blue band. Figure 16. Same as Figure 13 for the night of 15 November 1974, in the visual band. Figure 17. Same as Figure 13 for the night of 15 November 1974, in the blue band. Figure 18. Figure 20. Same as Figure 13 for the nights of 21 April 1975, and 21 August 1975, in the visual band. Same as Figure 13 for the nights of 25 September 1975, and 15 October 1975, in the visual band. No model was attempted. Figure 21. Same as Figure 13 for the night of 4 April 1976, in the visual band. Figure 22. Same as Figure 13 for the night of 4 April 1976, in the blue band. Figure 23. Same as Figure 13 for the nights of 4 May 1976, and 19 May 1976, in the visual band. Figure
24. Same as Figure 13 for the nights of 4 May 1976, and 19 May 1976, in the blue band. Figure 25. The straight line segment about 0.0P indicates the total portion of the eclipse, during which no contribution from the primary star is present, and therefore, no abnormal brightness distribution effects can be modeled. The observations clearly show that some excess light is present at second contact and that the excess appears well before third contact. The probable cause of this excess light is material falling onto the source region seen projected onto the sky above the limb of the primary. As the primary star again becomes visible, the source region on the star quickly becomes responsible for the excess light. This same type of behavior is evident in the egress branch on 15 November 1974 (see Figures 17 and 18). The behavior of the excess light during ingress on 15 November 1974, is more complicated than the model can presently fit. Striations in the source region may be responsible for this behavior. The nights of 21 April 1975, and 21 August 1975, were particularly interesting (see Figure 20). There appears to be no indication of any source region during these eclipses. Both eclipses were observed during periods of low activity and seem to indicate that an attenuating cloud had been formed. A synchronous cold polar source such as in Figure 11d may also fit the observations, although the physical reasons for such a source are obscure. Since only ingress was observed for both eclipses, no attempt was made to find the best fit. These nights, however, will be important in determining the chronological behavior of U Cephei. The eclipses of 25 September 1975, and 15 October 1975 (see Figure 21), occurred during the fall 1975, outburst. Unfortunately, the weather conspired to limit the data for these eclipses. The level of activity is very high and 25 September 1975, gives the only evidence that the main stream hot sopt (Figure 11a) may be responsible for the excess light. The data for 4 April 1976, were also limited, but the model curves drawn in Figures 22 and 23 give some indication that the model can represent these observations. The model chosen here was an attenuating cloud about the equator in combination with a polar hot source which is behind the star until well into the eclipse. The rather flat distribution of points in ingress indicate that other explanations are possible, but the data are insufficient to distinguish between the possibilities. One alternate explanation is that an equatorial cold source similar to those postulated by Olson (1977) precedes the polar hot source. The two eclipses observed in May 1976 (see Figures 24 and 25) were quite difficult to model. The egress peak occurred quite late and is broader than the previous eclipses. The large drop in light just after third contact is difficult to model as is the rather gradual decline just prior to fourth contact. The model parameters quoted in Table 23 are in parentheses because of the uncertainty of the fit. The model indicates a polar hot source of mild intensity but great extent (to account for the late egress peak), but no great confidence can be placed in these results. The level of activity is rather low and other effects may be as large as those this model was designed to describe. ## CHAPTER VIII THE U CEPHEL SYSTEM ## The Geometrical Parameters An inspection of the two solution attempts given in Chapter V reveals that they fit the observations equally well. The only noticeable differences in primary eclipse (see Figures 5 and 7) occur in the total portion of the ultraviolet eclipse. Recall, however, that the Russell-Merrill solution for the ultraviolet is not the same as the solutions for the visual and blue, whereas the Wilson-Devinney solution solved the three colors simultaneously. The depression of the ingress branch of primary eclipse is a well-known phenomenon in U Cephei and these observations show it clearly. The depression becomes somewhat more severe in shorter wavelengths, in agreement with the widely accepted notion that a gaseous stream flowing toward the primary star is responsible. This gaseous stream is projected onto the surface of the primary star during ingress, producing the depression. At other times in the orbit, however, it can add its light to the system without covering one of the components. As the stream hits the surface of the primary star, shock heating will create additional light. Taken together, these effects are probably responsible for the small amount of light that seems to be necessary in the blue and to a greater extent in the ultraviolet for the W-D solution. Although no third light was added in the solution, its addition would account for the discrepancy noted in the total portion of the ultraviolet eclipse. If third light is indeed necessary, its source is rather hot gas with the impact heating caused by the gaseous stream as the primary candidate. The W-D solution was successful in fitting the secondary eclipse in the visual. Neither solution attempt was able to fit the secondary eclipse in the blue or the ultraviolet. The blue light curve in secondary eclipse gives the impression of extra light near the beginning of the eclipse, effectively retarding the normal ingress branch. Since these effects were not visible in the visual band on the same nights, the disturbing influence must once again be rather hot gas. I shall return to this point again in the discussion of the primary star. The light levels in primary eclipse for the two solutions are very close, leaving the residuals unchanged. The solution parameters needed by the model are also very close in the two solutions, resulting in little change in the model curves. The largest change from the Russell-Merrill parameters to the W-D parameters is in the coefficient of limb darkening. This is inherently a second order effect, however, and should affect the model curves very little. ### The Primary Star Several questions arise from the model presented in Chapter VII. If a polar hot source is present, how does material get to the poles? Obviously, the polar brightening due to rotation would be a constant effect, not changing from cycle to cycle as do these observations. Why is the angle θ (the polar extent of the source) relatively constant? The most reasonable explanation for the polar source region involves a magnetic field for the primary star. Ionized material from the gaseous stream can then be pulled up out of the equatorial plane and impact the poles. The heating causing the polar source regions would be very similar to auroral activity on the earth. If such activity exists, it must be a rather constant feature of the U Cephei system, so long as mass transfer is in progress. During quiescent stages of the system, insufficient material is pulled up to the poles to create noticeable amounts of added light. During outbursts, however, the mass transfer rate may be one or two orders of magnitude greater than normal, and the extra light due to the shock heating at the poles becomes evident. Batten (1974) has estimated that as little as ten charged particles per cubic centimeter would be required to produce the emission features he observed prior to the 1974 event. The energy requirements for the infalling material are reflected in the mean velocities of Table 23. If these exceed the mean impact velocities of particles in the gaseous stream, then serious problems arise with the model. Particle trajectory models (Rafert, 1977) for stars with parameters close to the U Cephei system indicate that for thermal boil-off of material from the inner Lagrangian point, impact velocities of 40-50% of the synchronous velocity are expected. For U Cephei this amounts to 24-30 km/s, substantially greater than all but the most photometrically active night (10 November 1974). The model was able to account for cycle to cycle variations by simply moving the source region a small amount in longitude. The shift in longitude may be explained as an effect of the rotation of the primary star. For example, the shift between 10 and 15 November 1974 was about ten degrees. During these two cycles the model primary star rotated eight times. If the true rotation rate were, however, 8 1/36 per two cycles or 4 1/72 times the synchronous rate, then the true rotation rate explains the apparent shift in longitude of the source region. The difference between this rotation rate and the rate assumed for the model (i.e., four times the synchronous rate), is less than one kilometer per second. Much more data would be required before a quantitative analysis of this shift could be done. The shape of the source regions in the model is certainly a simplifying assumption. One source of error is undoubtably the sharp boundary of the source region. The models consistently gave a value to θ of approximately 65°. If the source regions are caused by infalling material along the magnetic field lines, then one expects the impact region to be symmetric about the magnetic poles. The results of the model may be telling us that the magnetic poles of U Cephei are tilted with respect to the perpendicular to the orbital plane by about 12°. One good observational check can be made on the polar hot source hypothesis. If the source rotates with the star as was assumed, then periodic extra light should appear in the light curve. Since the rotation rate of the primary star is not exactly an harmonic of the orbital period, we would expect this extra light to migrate in the light curve. Observations over 1½ years may show the peaks of extra light somewhat broadened from their true shape. The excess light may also disappear periodically as the mass transfer rate diminishes. With a synodic rotation rate of approximately four times the synchronous rate, extra light should appear during both eclipses and at quadratures. Some evidence for this trend is apparent in Figure 26, which shows the
residuals of the normal points from the Russell-Merrill solution. polar hot source may be responsible for the non-conformity of the secondary eclipse. The expected shape of the excess light in secondary eclipse would be one broad peak of the same extent in phase as both peaks in primary eclipse combined. # The Chronology of the Outburst Table 23 gives some information about the progress of an outburst. The early outburst may show an equatorial spot of The residuals of the normal points from the Russell-Merrill solution for the entire light curve. The absissa is phase. Notice the quasi-periodical variation of the residuals, possibly supporting the polar hot source model. Figure 26. equal brightness to the polar spot as evidenced by 25 September 1975. As the outburst continues, the polar source becomes dominant. Occasionally, the polar source may be accompanied by attenuating material about the primary star. On a time scale of 2-4 months, the polar source disappears and an attenuating cloud may be established. The attentuating cloud may not be permanent but may survive for some months past the disappearance of the polar source. ## Future Research The model presented in this dissertation, while simple in design, is very flexible for modeling abnormal surface brightness distributions on components of close binary systems. The success of the model is evident in the vast range of residual profiles for which the model is applicable. The future success of the model will depend on its continued ability to account for the observations. If the conclusions in this chapter have any validity, then this model can be applied to future outbursts. In obtaining data to confirm these conclusions, it will be important to observe the entire primary eclipse. Observations of secondary eclipse will serve as an important check. Definitive conclusions may be drawn about the validity of this or other models for U Cephei if the entire light curve could be obtained in a short time during an outburst. #### BIBLIOGRAPHY - Batten, A.H. 1974, Pub. D.A.O. 14 (10). - Batten, A.H., Scarfe, C.D., and Baldwin, B.W. 1974, I.A.U. Circ. No. 2701. - Carbon, D.F. and Gingerich, O. 1969, Theory and Observation of Normal Stellar Atmospheres, ed. O. Gingerich (MIT Press, Cambridge, MA), p. 401. - Carpenter, E.F. 1930, Ap. J. 72, 205. - Catalano, S. and Rodono, M. 1974, unpublished. - Ceraski, W. 1880, Astr. Nachr. 97, 319. - Chen, K-Y. and Rekenthaler, D.A. 1966, Quart. J. Fl. Ac. Sc. 29 (1). - Cowling, T.G. 1941, M.N.R.A.S. 98, 734. - Dugan, R.S. 1920, Contr. Prin. U. Obs., No. 5. - Hall, D.S. 1975, Acta Ast. 25, 1. - Hall, D.S. and Walter, K. 1974, Astron. and Astrophys. 37, 263. - Hardie, R.H. 1962, <u>Stars and Stellar Systems</u>, vol. II, ed. W.A. Hiltner (U. of Chicago Press), ch. 8. - Jeffers, H.M., van de Bos, W.H., and Greeby, F.M. 1963, Catalogue of Visual Double Stars (U. of Cal. Press). - Johnson, H.L. and Knuckles, C.F. 1955, Ap. J. 122, 209. - Joy, A.H. 1947, P.A.S.P. <u>59</u>, 171. - Khozov, G.V. and Minaev, N.A. 1969, Trudy Astr. Obs. Leningrad State U. 26, 55. - Kopal, Z. 1959, Close Binary Systems (Wiley, New York). Merrill, J.E. 1950a, Contr. Prin. U. Obs., No. 23. 1950b, Ibid., No. 24. Morton, D.C. and Adams, T.F. 1968, Ap. J. 151, 611. Oliver, J.P. 1976, Rev. Sci. Instrum. 47 (5). Olson, E.C. 1977, in press. Plavec, M. 1973, Extended Atmospheres and Circumstellar Matter in Spectroscopic Binary Systems (I.A.U. Symp. No. 51), ed. A.H. Batten (Dordrecht, D. Reidel), p. 216. Prendergast, K.H. and Taam, R.E. 1974, Ap. J. 189, 125. Rafert, J.B. 1977, dissertation, U. of Fl. Russell, H.N. and Merrill, J.E. 1952, Contr. Prin. U. Obs., No. 26. Struve, O. 1944, Ap. J. 99, 222. Tchudovitchev, N.I. 1939, Bull. Engelhardt Obs., No. 17. 1950, Astron. Circ. Kazan, No. 100, p. 14. Tsesevich, V.P. 1973, <u>Eclipsing Variable Stars</u>, ed. V.P. Tsesevich (Wiley, New York), ch. 2. Walter, K. 1975, Astron. and Astrophys. 42, 135. Wilson, R.E. and Devinney, E.J. 1971, Ap. J. <u>166</u>, 605. Wilson, R.E. and Stothers, Richard 1975, M.N.R.A.S. 170, 497. Wood, D.B. 1972, A Computer Program for Modeling Non-Sperical Eclipsing Binary Star Systems, Goddard Space Flight Center, X-110-72-473. #### BIOGRAPHICAL SKETCH Norman Lee Markworth was born on 9 June 1950, in Palatine, Illinois. He was raised in Des Plaines, Illinois, where his parents still reside. He graduated from Maine Township High School West in June, 1968. He attended the University of Illinois from September, 1968, to June, 1972, and graduated with a Bachelor of Science in Physics. While at the University of Illinois, he completed the requirements for a degree in Astronomy. His graduate work began at the University of Florida in September, 1972. Under the tutorial guidance of Dr. F.B. Wood, he soon became interested in eclipsing binary systems. He worked as a research associate in the variable star search program at the Remeis-Sternwarte, Bamberg, West Germany, during the summer of 1974. On 5 July 1975, he married Mary Hudak. The Doctor of Philosophy is expected to be conferred in August, 1977. I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Frank Brackhaw Word Frank Bradshaw Wood, Chairman Professor of Astronomy I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Kwan-Yu Chen, Cochairman Associate Professor of Astronomy I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Edward J. Devinney Associate Professor of Astronomy I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Howard L. Cohen Associate Professor of Physical Sciences and Astronomy I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. Arthur A. Broyles Professor of Physics This dissertation was submitted to the Graduate Faculty of the Department of Physics and Astronomy in the College of Arts and Sciences and to the Graduate Council, and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy. August 1977 Dean, Graduate School UNIVERSITY OF FLORIDA 3 1262 08666 279 7